NXPSemiconductors Document Number: SLN-VIZN-IOT-DG

Developer’s Guide Rev 1.0, 02/2020

MCU VIZN Solution Developer’s Guide

TABLE OF CONTENTS

1 INTRODUCGTION ...ccuuueriiiiiiiiisssnneeesisssssssssssesssssssssssssssssssssssssssssessssssssssssssesssssssssssnssssssssssssssnnsssssssssssssnnssssssssss 4
1.1 RT106F VISION CROSSOVER PROCESSOR OVERVIEWccccuiiiiiinieeiiienieenieesreesieesseesbeesseessseesnseesssessnsessnnes 4

2 GETTING TO KNOW THE SLN-VIZN-IOTouueereeiiiiiicrrsnnneeeessesessssnnsessssssssssssnsessssssssssssssssssssssssssnnsssssssssssssnnnsans 6
2.1 HARDWARE OVERVIEW ..eeutieiuteesureesseessreessessssesaseessseessessssesassessssesansessssesassessssessssesssssssssesssessssessssesssessssessnsessns 6
2.2 SOFTWARE OVERVIEW ..veeiuvieiuteesureeaseessreessessssesaseessseesssessssesassessssesansessssesasesssessssessssssassesssessssessssesssessnsesansessns 7
2.3 DEVICE IMEMORY IMIAP ...uttiiiiteeieieesteestteesteesateeeseesateessseesstaeasseesateeanseesaseeasseesaseeanseesssaeanseesaseeanseesnseessseesnsessnseenns 8
2.4 SECURITY ARCHITECTURE t.uvvtesuveessreesseessreessseesssesssseesssessseesssesssseesssessnsessssessssessssessnsessssesssseesssessssesssessssessssesssseesns 9

D N VoY o) [ole L oY M0 o Lo 11 e A VY S USSP 9

2.4.2 Generate APPliCtion BANK B BiNQIYcoeeeeuueeeeiiieeeiiieeesiieeeetteeeeettvaaessaeaessisaaessasssaessssassssssasnanes 10

2.4.3 Flash Image Configuration Area (FICA) and Image VerificQtioncccovueeeevueeeecceveesiiieeeesiiveeeanns 11

2.4.4 Image Certificate Authority (CA) and Application CertifiCates...........ccovuimmvvueeesirereesieeeesiireeeesireeeeenns 11

3 GET STARTED WITH MCUXPRESSO TOOL SUITEuuueteeiiiieicrsrnnneenesescssssnnsessssssssssnnssssssssssssssnnsessssssssssnnnsans 12
3.1 MCUXPRESSO IDE...cccuvieiureeereesiieesteesteeeteesteeesteesateessaeesssaeasseesasaaasseesasaaasseessseaasseessseassseessseensseessseensseesnseennsens 12
30 [N YU [T 2] GRS R 13
3.3 IMPORT ASLN-VIZN-TOT PROJECT...cetttitiiiiieieiereietttetetetetereeererererererererereteterereterereteretetereteteteteretetetrmrerererer 14

4 BUILDING AND PROGRAMIMING.......ccovvumrerririiissssnnnesssssssssssssessssssssssssssssssssssssssnssesssssssssssnsssssssssssssnnsesssssss 17
4.1 BUILD A SLN-VIZN-IOT PROJECT 1.utteeutetestreeresenteeetesesseestessnseessesssseesssessnssesssesssseesssesensessssessssessssssensessnsesensessnses 17
4.2 FLASH AND DEBUG SLN-VIZN-IOT PROJECT ..eteiiieiuetittteeeeeiiietteeeeeeseitetteeeesesauteeeeeeesesaamneseeeeesesasnnnseeeeesssannnnseeeeas 19

5 BOOTLOADERcuuuueetiiiiiiisssnneeeississsssssssesssssssssssssssssssssssssssssessssssssssssssesssssssssssnssssssssssssssnssesssssssssssnnsesssssss 22
5.1 APPLICATION FLOW ..tiiiiiiiiiitieee e e e ettt ettt e e e e ettt e e e e e s be et e e e e e saane b et e e e e e saansbe e e e eeeaeaannbeeeeeeesesannbebeeeeesesannnnreneeas 22
5.2 OVER-THE-WIRE (OTW) UPDATES ...ceceuureerreeeieiitrereeeeeeeieitrareeeseeesesssseessesssesisssssseesssesssssssssesesessssssssessesssensnssesees 22
5.2.1 e TR =1 I 23

5.2.2 JSON MESSAGES ...eeeieeeiesesesesesesesesesesssnsess 23

5.3 IMASS STORAGE DEVICE (IMISD) UPDATE .uuvveiieeeieiiireeeeeeeeeieiitreeeseeeeesssreeeseeesesisssssssesesessssrsssessesessssssssessesssensnssenees 25
5.3.1 Generate APPlICAtion BANK B BiNQIYcc....uuuueeieeeeeeiiieieeeeeeeecieeaa e e eeetettaaaaaeeessitsasaaaaeeessassssaaaaeeaaas 27

6 AUTOMATED MANUFACTURING TOOLSiiteiiittniiiienniciiensieiiessieimssssiisssisissssisimsssssssssissssssssssssssssssnsssssnns 28
6.1 ABOUT IVALDL. ..ttt teee e ettt e e ettt et e e ettt e e e e e e s e be et e eeeeeea s bs e eeeeeae s e nasbeeeeeeeaeaaanbeeeeeeeeesannbebbeeeeeesannnreeeeas 28

1 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

B.2 REQUIREMENTS 1uuueeeeiettttieeeeeererstsnaeeeeesessunnaesesssessnnnaesessssssssnssessssssssssnsesssssssssnesessssssssnmesessssssssnneesesssssnnnnnns 28

6.3 CREATING A SIGNING ENTITY L..uitiiiiiiiieiitie ettt ettt et e e e sttt e e e e e s et bt e e e e e se s anbabeeeeeeesaanbebteeeeeesaasnsaaeeas 28
6.3.1 Using Ivaldi to Generate Signing ArtifOCtScooueevuiiiniieiiieieeet ettt 29
6.4 OPEN BOOT PROGRAMMING ..ccuuuttteriuutetesurttesasiretesausteessretesaauseeesansseesssseeesasssesesansseessnsenesanssesessnseesssnseeessnnseeesannees 30
6.5 (OPTIONAL) ENABLING ENCRYPTED EXECUTE-IN-PLACE (EXIP) AND HIGH ASSURANCE BOOT (HAB) ...ccvvveeeiiieeereee e 31
6.5.1 Preparing the ENVIFONIMENTccccueeeeeeeeeeeeieeeeteteeeteeestte e e sttt e eaeteaeessesasatseaesssssasssasssasasssesansnes 31
6.5.2 Generating the PKI and Signed FIGSRIOAAErccceeeeeeeeeieeeiieeeeeee e eeee e etee e e e e e staa e e 32
6.5.3 CreQting the IMAQGES.........cocueeeeeeiieeeeeeeee ettt ettt e st e st e e saeeesaneenaeeeaes 33
6.5.4 Generating SECUIE BiNAIYcooouueiiiiiiiiiiiiiisiie ettt ettt sttt ettt 35
6.5.5 Enabling High ASSUrANCe BOOT (HAB)........coueeueiieieestet ettt ettt sttt ettt iees 36
6.5.6 Preparing for Programming the DEVICEc.ceecueerueeeieiiiiieeieieieeeee sttt 37
6.5.7 Enabling and Programming the Signed and Encrypted BiNQries............c...cccecceerveeeseeeseeeneeesieeseeene 38
7 FILESYSTEIMuuuiiiiiiiiiiiiiiiiiiiiiisisssisssssss s sssnss 40
8 DOCUMENT DETAILS.....ciiiiiiiiiiiiiiiiiiiiisiississsnss 41
8.1 REFERENCES .eeeutttteeutteeesurteeeatteeesausteeesubeeeeasteeesausaeesaabaeeaaasteeesassaeesaabe e e e e st e eesasbeeeaabeeeeeanbeeesnsaeeesasbeeeensaeesannees 41
8.2 ACRONYMS, ABBREVIATIONS, & DEFINITIONS ..cccuutttereurteeesreeesanureeesanteeesteeesasuseeesausteessusenesssnseeessseeessnsesessnsseeessnees 41
8.3 REVISION HISTORYuutteeiiutieeestteeeeeuteeeesuteeesssseeesssseeeesssaeeeasseeesassaeeessseeessnsseeesansseessnssnesanssesessnsnessssssnesenssseesnsnes 42
TABLE OF FIGURES
FIGURE 1: SLN-VIZN-IOT BASE BOARD + EXPANSION BOARD PERIPHERALS.....cceiuutteieririreeauteeesiteeeenuieeesenreeesnneeeesareeessnnseeesnnnes 6
FIGURE 2: SLN-VIZN-IOT HARDWARE BLOCK DIAGRAM .. .uuvtiiiiiiieeeititeeeiteeesitte e ettt e seinteeesnteeeesabeeesensbeeesnneeessabeeesensrneesnnsees 6
FIGURE 3: SLN-VIZN-IOT SOFTWARE BLOCK DIAGRAMuuvteeiiitieeaiutetesniteeestttesenuteeesasseessnseeessuseeesasseeesanseesssnsesessnsseeesnnsees 7
FIGURE 4: DEVICE IMEMORY IMIAPuititteeiteeeeititeeeeiteeeseetteessstaeeesateae s aaaaeesnsaeasenssaeesanseeessnsseaeensseeesansseeesnsaeeennseeesansseeesnssnes 8
FIGURE 5: BOOT SECURITY FLOW CHARTutvteteiuuteessuteeeeeuteesesteeeessuseeesnssnesesnsseesanssseesssssssssnsseesssssesesssssessssseesesnsesessnssesssnssnes 9
FIGURE 6: SIGNING ENTITIES. .eeeiuutteteiiteeerteeessinreeeseieeeesisteessaneeesemreeesamsneeesaneeesanreeesamnneeesneeeseanreeesansreeesnnneeeanreeesennneesannnes 9
FIGURE 7: MCUXPRESSO IDE WORKSPACE ...ceeeuurtterurteeeiureresaieeeesneeeseamreeesansseessanetesesssesesannseessanenesasnsesesannneessaneeesssnnesesannees 12
FIGURE 8: EXTRACTING SOFTWARE COLLATERAL ZIP...cieieieieeeeeieieieeeeeieeeeeee e e eeeeeeeeseseseseaeseseseseaesasesasasasesesasesesssesasasasesasesenseenenns 13
FIGURE O: DRAG AND DROP SDKcciiiiiiiiiittteee et ettt ee e e e sttt et e e e ettt e e e e s e s anbet et eeeeesaanbe st e eeeeesannnnseeeeeeesasnnnreneeaessenannnes 13
FIGURE 10: IMPORT SDK CONFIRMATION WINDOWuuttteteieiaiutteeeteseaaauereteteeesesaunteeeeeeesesannsseeeeesesannnsenesesssasansseneeeessesannnes 14
FIGURE 11: SDK IMPORT SUCCESSFUL ...eeuutttttteseeeaaiietteeeesesaussteeeeesssaaunnseteeeesseaaunbeseeesesesannseseeeeesesannnrenesesssasansrenesasssanannnes 14
FIGURE 12: IMPORT SDK EXAMPLES ..cceeeteiuttttteeeeeesaitttteeeeeeseutsteeeeeseseunneeteeeeesesamnbeeeeeaeeesaanbeeeeeeeeesannnnseneeeeesasnnreneeeessanannnes 14
FIGURE 13: IMPORT SLN_VIZN _TOT EXAMPLES ...ceeeeieieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeeseeeeeaeaeeesesesasesesesasesesssesesasasesasesesesenenns 15
FIGURE 142 IMPORT EXAMPLEScetitttetiitteeeetteeesieteessiteeeseine e e st e s emr e e saasee e e saneeesesbe e e snnaeeesaneeesenreeesnnneessareeesennreeesannnes 15
FIGURE 15: PROJECT EXPLORER - HIGHLIGHT PROJECT ..eeieieieieieieieieieieieieeeeeee e ee e ee e e e e e e e e eeseseaeeeeeseseeeeeseseseeesesasesasasasasananansnenenas 17
FIGURE 16: BUILD PROJECT ..cteiuitieeettteseiitieeseiteeesieeeesamreeeseasee e e saseeeseamseeesamsaeeesabaeeseasbe e e smnneeesareeesenreeesnnneessareeeeeanneeesannns 17
FIGURE 17: CONSOLE 'BUILD' OUTPUT c..uttieutieeutetettestteeiee sttt sieesabeesseesabeesstesabeessseessbeeesseesasesesssessesensbesasesesssessesenseesnsenes 18
FIGURE 182 LAXF TO BIN ..ctttetiiiuuttttteeeeaaiuttttteeeesesautebteeeeeesauseb et e eeeeaaansneeeeeeeeaeaansbe et e eeeeesannseeeeeeeeesannnnseeeeeeeaannnreeeeaeesesannen 18
FIGURE 19: J-LINK PLUS AND 9-PIN CORTEX=IM ADAPTER....ccettteuutttttteeeaeiietttteeeesesanteteeeaesesaasaeteeeesesaannsaeeseeesasnnreeeeaessenannnes 19
FIGURE 20: SLN-VIZN-IOT JTAG HEADERettteiiieiititttee e e e ettt et e e e e ettt e e e s e sanbateeeaeaesaabeeeeeeeeesaannbeeeeeeeaaaannseeeeaeesesannnes 19
FIGURE 21: QUICKSTART PANEL = DEBUG. .. .uttttteieieiitetttee e e e sttt et e e e s ettt e e e e s e s bttt e e e e e saanbeeeeeeeeesannnnbeeeeeeesaannbeeeeaeesanannnes 20
FIGURE 22: PROBE DISCOVERY WINDOW.......ceeteiureteruetesenureresaneeeesneeessnsreeesansneessanseesasnsesesansneessanenesannsesesasneessnnenessnnseeesannees 20
FIGURE 23: FLASH DOWNLOAD IN PROGRESSuvvtieiurteeeitetesaieeeesneeesessteeesanseeessasaeesannesesannseessaneeesannsesesansneessnsseesssnnesessnnes 21
FIGURE 24: DEBUG BEGIN ...ceeiiuiiiieiiieeeeittee ettt e sttt e e ettt e sttt e e sttt e e eabe e e sease e e e saneeeeeambe e e snneeeesaneeesennreeesnnneessaneeeeennreeesnnnes 21
FIGURE 25: DEBUG TOOLBAR = RUN BUTTONuuiiiieiiiteeeitiee sttt e sitee s ettt e e st e e st e s esneeesmnneeesaneeesenreeesnnneessanseessnnnenesannes 21
FIGURE 26: BOOTLOADER FLOW ...ciiutiteiiirteeeaitteesietesesiteeeseneeeesaneeesemteeesanseeeesaneeesenneeesannneeesanaeesenseeesnnneesanneeesennneeesannns 22

2 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

FIGURE 27: TRANSFER FORMAT «.evtttutieeeeettttttieeeeeeestsstiieeeeessssssneaseessesstsnneseesssssssnnesesssssssnnssesessssssnsnnsessssssssnnesesssssssnnneeseees 23

FIGURE 28: REQUEST/RESPONSE FLOWiccteeiteieiteeeteeeeteeetesesseeeetesesseeensesessesensesessssensesensesensesessssensesessssensesessseensesessesensess 23
FIGURE 29: MSD ENABLEMENT BUTTONuuttttteteteieiiitteeeeeeseiiitteeeeeeseauusttteeeeesesunbeeteeeesesansseteeeeeesaannbaaeeeessasannsaneeaessasannnes 25
FIGURE 30: IMSD IMIODE LIGHTS ... utteiitieitie sttt sttt st sttt ettt et s et e sbe e st e sbe e s be s e baesabe s e sbaesbesenmaeennaees 26
FIGURE 31: MSD USB DRIVE ENUMERATIONvtiiutiiirieiiieirieeiteesreeeieesree st e sre e s reesbesesmaesne e ssaesme s e sbaesaresesmneenasessneennenes 26
FIGURE 32: DRAGGING-AND-DROPPING NEW BINARYeiiiiiiriiiiiieiiiiiieeitit ettt ettt sie e s snae s sbne s ne e ssneennae s 26
FIGURE 33: CREATE FLASH BANK B BINARYceiutiiitiiiriiiiee ittt sttt st ettt e sba e s bt e sbneena e saneenasesmneennaees 27
FIGURE 34: VIRTUAL ENV PROMPT ..ciiiiiiiiiitteee e e ettt ettt e e e sttt ettt e e e s ettt e e e e s esanbe et e e e e e e s anbsbteaeeeesaannbtaeeeessasnnbaaeeaeesanannses 29
FIGURE 35: GENERATE_SIGNING_ARTIFACTS.PY USAGE ...ceiuriiiiiiiieiiiiiesiiiietesiire e st e s st e seimne e sra e e s e sre e e ssnne e s sanaeesesnaeesnnnes 29
FIGURE 36: GENERATE_SIGNING_ARTIFACTS.PY EXAMPLEoeiiiiiiiiiiiiiet ettt sttt st e s ssnn e s e e s sn e e s 29
FIGURE 37: OPEN_PROG_FULL.PY OUTPUT ..ceiiiuutiiiiitiesiiirteeseiteeessetessisreeeseisae e s simatessmnesesamsaeessanasesenresesnsaeessneeessannaeesannnes 31
FIGURE 38: "VIRTUALENVY” PROMPTtitiiiutiteeeiteeesetteesriteeessuteeesuseeesnsteeessssseeesssseesssssseessnssesssssnesssssesesnssseessnseeessssseeessnnes 32
FIGURE 39: SETUP_HAB.PY SCRIPT ... uvttiutieiteerrte sttt srteeteesressseesabeeebeesabe e s sseesbe s e smeesbe s e sbaesabe s e sba e s be s esbaesabesesbnesabesensneennanes 33
FIGURE 40: CHECKING THE SIGNED FLASHLOADEReeitiieiteiretettesreeeieesree e e e sneesbeesnesssmeesne s e ssaessnesesbaesbesesnneesnasessneennases 33
FIGURE 41: IMPORTING THE APPLICATIONS FOR HAB AND EXIP.....uviiiiiiiiiiiiiiiiie ettt 33
FIGURE 42: UNSETTING THE XIP BOOT HEADERuutiitiiiiieirieeiee sttt sttt ettt st s bt e sne e sbaesne s e sbaesne s e smnessnasesmneennenes 34
FIGURE 43 GENERATING THE SRECeeutteeutteruteesteesuteesaueesuseesseesaseeanseesaseesseesaseessssesasessaseesasesesssessesenssessesesssesasesenseesnsenes 34
FIGURE 44: CHANGING FILE TYPE TO SREC. . uvteeutttetterreeenseesteeaseesseeesseesaseessseesaseessseesasesssseesasesesssessesenssesssseesnsesssseesnessseees 35
FIGURE 45: GENERATE BOOTLOADER AND USERID_OOBE BINARYceiutiiiiieriteeiteeiteesite ettt esite st esieessbesesstesbesesntesneeesnnesnneeas 35
FIGURE 46: "IMAGE_BINARIES" EXPECTED FOLDER CONTENTS ...ceeuteeutetetterteeenseesseeesseesaseeesseessesesseessesesseessesesssesssesesseesnseses 35
FIGURE 47: SECURE APP FILE NAMESutttitteetttette ettt ette sttt s tee sttt e bte sttt s st e sabee s st e eabeeeseesabeeesbeeeabeeesbeeeabesennbesbeeensneeseeas 36
FIGURE 48: SECURE.PY OUTPUT FOR SECURING IMAGES. ...cccuuterreteieerrteeitesnetesieesaneeesseesnesesseesanesessaesanesessaesnesessnesnesessnesnsenes 36
FIGURE 49: ENABLING HAB USING ENABLE_HAB.PY...ccottiiiierritiiitesreteiee st esseesreeesseesnesesseesanesessaesanesessaesbesessaesanasesmnesnnenes 37
FIGURE 50: "IMAGE_BINARIES" CONTENT ...vtteeeitteeeiitteeeesteeeeesssseessseesasssesesassssesssssssasssssssassssesssssssassssssssssssssssssesesnssssssssens 38
FIGURE 51: USING "CUST_PROG_SEC_APP.PY" ... it iiittieeeitieeeeitteeeeteeeestteeeeetteeestaeeeattaeeeassaaeesassaeaastaesaansaaeesnsseeasassaeesansens 39
FIGURE 52 FILE_FORMAT.PY USAGE....cutttiitteetteeteeetteentee sttt eateesabeesseesabeeesseesbeessseesabeeeaseesabeeesseeebetenseeensesenatesbesensnenseeas 40

TABLE OF TABLES

TABLE 1: SUPPORTED COMPUTER CONFIGURATIONS .cetitiiiiiiitieeeiteeeeeee ettt et e aaaaaaaaaeas 5
TABLE 2: WI-FI FREQUENCY & POWER
TABLE 3: REFERENCE DOCUMENTS .vvttiiiiiieititteeeeeeeeiitttseeeseeesastaaseeseeesastassasassssaassssssseessssnsssssssesssansssssnssesssenssssessseessenansees

TABLE 4: ABBREVIATIONS AND DEFINITIONS ..eeeiiiiiieeieiiieieeeeeeeeeee ettt ettt e e s e aeeeaeeeaaeaeaaeseeesaeanaeanenns 41
TABLE 5: REVISION HISTORY

3 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477974
https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477976
https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477985

1 Introduction

NXP’s MCU-based SLN-VIZN-IOT development kit provides OEMs with a fully integrated,
self-contained, software and hardware solution. This includes the i.MX RT106F run-time
library and pre-integrated machine learning face recognition algorithms, as well as all
required drivers for peripherals, such as camera and memories.

This cost-effective, easy-to-use face recognition implementation facilitates the demand
for a face-based Friction Free Interface that can be embedded in a variety of products
across home, commercial and industrial applications, thus eliminating the need to use
hard to learn and time-consuming mechanisms to identify users.

TARGET APPLICATIONS

e Safety/Security/Alarm devices: E-locks, Alarm panels, remote sensors, and
automated access

e Smart appliances: Washing machines, dryers, ovens, refrigerators, stoves, and
dishwashers

e Home comfort devices: Thermostats, remote temperature sensors, and lighting

e Counter-top appliances: Microwaves, coffee machines, rice cookers, and
blenders

e Smart industrial devices: Power tools, ergonomic stations, machine access and
authorization

1.1 RT106F VISION CROSSOVER PROCESSOR OVERVIEW

The i.MX RT106F is an EdgeReady member of the i.MX RT1060 family of crossover
processors, targeting low cost embedded face recognition applications. It features NXPs
advanced implementation of the Arm® Cortex®-M7 core, which operates at speeds up to
600 MHz to provide high CPU performance and best real-time responses. This i.MX
RT106F based solution enables system designers to easily and inexpensively add face
recognition capabilities to a wide variety of smart appliances, smart homes, FRICTION
FREE INTERFACE VISION HARDWARE and smart industrial devices. The .MX RT106F
processor is licensed to run NXPs i.MX RT run-time library for face recognition which may
include:

e Camera drivers

e Image capture

e Image pre-processing
e Face alignment

e Face detection

e Face recognition

e Emotion recognition

4 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

System Requirements and Prerequisites

Once you're ready to begin development, you will need to download MCUXpresso IDE.
The current SDK is tested with versions 11.1.0 of MCUXpresso IDE and Segger J-Link
V6.6X.

https://www.nxp.com/support/developer-resources/software-development-
tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-
environment-ide:MCUXpresso-IDE

Computer type OS version Terminal
Apple Mac OS PuTTY
PC Windows 7 / 10 PuTTY/Tera Term
PC Linux PuTTY

Table 1: Supported Computer Configurations

Usage Condition

The following information is provided per Article 10.8 of the Radio Equipment Directive
2014/53/EU:

(a) Frequency bands in which the equipment operates.

(b) The maximum RF power transmitted.

PN RF Technology (a) Freqg Range |(b) Max Transmitted Power

SLN-VIZN-IOT Wi-Fi 2412MHz-2472MHz

17.9dBm

Table 2: Wi-Fi Frequency & Power

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the
Radio Equipment Directive 2014/53/EU)

This apparatus, namely SLN-VIZN-IOT, conforms to the Radio Equipment Directive
2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this
location: https://www.nxp.com/

SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/

2 Getting to Know the SLN-VIZN-IOT

2.1 Hardware Overview

The SLN-VIZN-IOT kit is intended to provide a reference for a real product design. The
kit is designed using a small form factor which takes into account many of the design
considerations a hardware engineer would make when creating a product. With that said,
NXP has also fashioned the hardware to have some of the key hallmarks of a traditional
development Kit.

PDM MEMS
Microphones
RT106F Debug/
SDRAM Programming Header PIR

Switch S T T T =
Buttons

1W MONO \
Audio Out RT106F
Peripheral Expansion

Access

Boot Mode
Hyper Flash Jumper T T
RT106F
Reset
Uss Li-ION
Batt IN

Figure 1: SLN-VIZN-IOT Base Board + Expansion Board Peripherals

iMX RT JTAG USB iDC IN/BATTERY L
Connector 1L Connector Connector
XCL214B333 g ? e, R
5V to 3.3V »> 4 TPSE' DRCR| | XC6233H181 smﬂmg
Regulator £ Regiator | Regulator | Michasat
S
MT9M114 RGB
= CSl and 12C and GPIO 4 Camera ’ Image Sensor | | Pass Filter
usB 8 "] Connector
o GPIO Camera Module
PIR Sensor
i
PDM " Display |
%‘ Y P e TS T i SR s e > Co""peck’or
<< J """""
MIMXRT106FDVL6A 1T . Audio e
e 196 MAPBGA B | digams [P »; Audio |
| cywaaeow psetj—SDI0_, SRS EREEY 8 T
H chipseti————> IR _ S| e
| Wi-Fi and BT/BLE g UART MCU P 5
{ Radio g P POM_ le i SPHOB41LM4H-1 :
vy g Digital MIC
I i P » Wi-Fi LED
256 Mbit 256 Mbit B[——"ReBLED
uFL HyperFlash™ SDRAM 8 |¢—————SW1, SW2, SW3, SW4
Conn Memory Memory £
-
i.MX RT SoM IE Serial Port Vision Board
Header
[] Non NXP Technology NXP Technology """ Additional Board Features

Figure 2: SLN-VIZN-IOT Hardware Block Diagram

6 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.2 Software Overview

The SLN-VIZN-IOT kit has been built and designed in such a way that enables best
security practices while keeping a development kit feel. The main security mechanism
that has been implemented is a series of image verification stages that are required for
every image programmed onto the device. The sections below guide you through the
overall software and security architectures and the implications they have during the
development and production phases of your product development.

The below figure shows a high-level software architecture diagram. This figure shows
everything that is included in the SDK for the SLN-VIZN-IOT package, though not all of
these features are implemented in demo applications.

Customer/NXP Wi-Fi AP & _ :
Application and Control BLE Pairing Onboarding
Inference framework
I
% Connectivity Face Recognition Al model
3 & Host Control/
9 Messaging Face Alignment
=
g Anti-Spoofing
g
@ Face Detection Al model

Sensor Sampling/Data Pre-processing

Driver Layer

Flash B Wi-Fi/BLE LCD Display Camera UART/SPI GPIO

Figure 3: SLN-VIZN-IOT Software Block Diagram

7 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.3 Device Memory Map

To understand the various pieces of the system, it helps to see the memory map that NXP
has developed for this application. There are many components required in the system
to successfully boot and execute an application. A few of these sectors will be described

in greater detail below.

DISABLE_IMAGE_VERIFICATION = 1

0x60000000

0x60040000

0x60300000

i

RegisteredUsers DataBase |0x60800000
0x60D00000

File System: 0x61700000
0x61B00000

FICA Table: 0x61FCO000

DISABLE_IMAGE_VERIFICATION = ©

0x60000000

0x60040000

0x60300000

AppA Certificate
0x60800000

0x60D00000

RegisteredUsers DataBase

V|

AppB Certificate

File System: 0x61700000
0x61B00000

ROOT_CA_CERT 0x61CC0000
AppA SIGN CERT 0x61D00000

AppB SIGN CERT 0x61D40000
Btld SIGN CERT 0x61D80000

FICA Table: 0x61FCO000

Figure 4: Device Memory Map

8 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020

NXP Semiconductors

2.4 Security Architecture

The following figure shows the series of checks that occur at boot time. Configuration
options in the various applications (ROM bootloader, bootstrap, bootloader) will determine
which sequence is followed. The state of the board from factory is with all security
checks disabled.

Ch k BL heck App’
MCU ROM ec - 7 Enn
Bootloader Signatui Signature? Mo
e

Figure 5: Boot Security Flow Chart

If at any point a signature check fails (in the case where HAB or image verification is
enabled), the boot process stops.

2.4.1 Application Chain of Trust

The basis of the security architecture implemented in the SLN-VIZN-IOT is signed
application images. Signing requires the use of a Certificate Authority (CA). NXP has
its own CA for signing applications at the factory, but the CA is not something that is
shared with customers.

The CA is used to create signing entities for the bootloader and application. A certificate
from the CA is stored in the SLN-VIZN-IOT’s filesystem and is used to verify the
signatures of the signing entity certificates. In addition, locally stored certificates from the
signing entities are used to verify the signature of firmware images coming in over the
OTW bootloader interface.

NXP Production
CA

Bootloader Flash Bank A Flash Bank B
Signing Entity Signing Entity Signing Entity

Figure 6: Signing Entities

9 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.4.2 Generate Application Bank B Binary

As previously mentioned, if the board is currently running from Application Bank A, MSD
drag-and-drop flashing will require a binary created for Application Bank B and vice versa.
Currently the active application flash bank information is not exposed to the user and can
only be found through attempting to flash both a Bank A and Bank B application with
MSD.

To generate a binary for Application Bank B in MCUXpresso you must change the flash
address for your kitin MCUXpresso. To do so, right-click on the sIn_vizn_iot_userid_oobe
application in in the Project Explorer panel and click on Properties.

Under the Properties dialog window that appears, click the drop-down arrow next to
C/C++ Build, and select MCU settings. Change the Flash address from 0x60300000 to
0x60D00000, then click Apply and Close.

v C/C++ Build

MCU settings

p.

Update Flash Address

3

Flash BOARD_F... Flash 0x60d00000RENVENY 1] MIMXRTT...

Apply and Close

Figure 33: Create Flash Bank B Binary

Rebuild your application using the steps found under Building and Programming,
making sure to generate a binary from the .axf. The generated binary will be able to
reflash the main application when the kit is running from Application Bank A.

Be sure to change the flash address back to 0x60300000 if trying to run debugging
using a J-Link.

Automated Manufacturing Tools can be used alongside your unique CA.

10 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.4.3 Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the
images that will be booted. It contains information about the image and signatures of the
applications that will be used to ensure that only verified firmware is executed. This
ensures malicious images cannot be executed without it being signed with the certificate
authority and certificate that is programmed into the filesystem. Before any image is
jumped to, it is first verified using the signature from its associated FICA entry.

For example, in the standard boot flow shown in Figure 5:

e The bootstrap will use the bootloader FICA entry to validate the bootloader
e The bootloader will use the AppA FICA entry to validate the AppA image
e The bootloader will use the AppB FICA entry to validate the AppB image

For final production, the solution provides programming scripts to enable i.MX RT High
Assurance Boot (HAB) to verify and protect the bootstrap component. It is recommended
that users enable HAB for their end product.

The downside of having this security protection enabled is that programming new images
can be a little more complex as it requires signature generation. Taking in consideration
that this flow may be time consuming and not required for basic development tasks, NXP
introduced some bypasses to make the job easier for developers. These bypasses
should not be deployed in production.

Again, the default configuration of the SLN-VIZN-IOT is to have HAB disabled and
signature verifications bypassed. This is to ensure a smooth development experience.

2.4.4 Image Certificate Authority (CA) and Application Certificates

The SLN-VIZN-IOT kit comes pre-programmed with signed images (though signature
verification is bypassed by default) as indicated in the Flash Image Configuration Area
(FICA) and Image Verification section. The bootloader and userid_oobe application
are signed using NXP’s test CA and can be used to ensure the authenticity of all images
which are intended to be booted.

The application signing certificates are located at the following locations in the filesystem:

e Address 0x61D00000 for Application Bank A
¢ Address 0x61D80000 for the bootloader

The certificate for the CA (used to verify the application signing certificates) is located at
address 0x61CC0000 in the filesystem.

11 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

3 Get Started with MCUXpresso Tool Suite

The following section is going to describe the steps to setup the environment and prepare
it for development.

3.1 MCUXpresso IDE

MCUXpresso IDE brings developers an easy-to-use Eclipse-based development
environment for NXPs microcontrollers based on Arm® Cortex®-M cores. It offers
advanced editing, compiling and debugging features with the addition of MCU-specific
debugging views, code trace and profiling, multicore debugging, and integrated
configuration tools. Its debug connections support every NXP evaluation boards with
industry-leading open-source and commercial debug probes from ARM®, P&E Micro®
and SEGGER®

1. To download NXP MCUXpresso IDE for free go online to: www.nxp.com/MCUXpresso

2. Select MCUXpresso IDE from the PRODUCTS tab.
3. Go to DOWNLOADS tab and select the LATEST VERSION of the tool.

If you do not already have one, you will be asked to sign-infup with a free NXP user-
account.

4. When MCUXpresso installer download completes, double click on the executable,
follow the install instructions and keep the default options.

5. Launch MCUXpresso IDE and define the Workspace location where you will copy and
store your projects (default C:\MCUXpresso.Workspace) and press OK.

(3 Eclipse Launcher x

Select a directory as workspace

MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts,

Workspace: | CAMCUXpresso.Workspace ~ Browse...

[]Use this as the default and do not ask again

¢ Recent Workspaces

Figure 7: MCUXpresso IDE Workspace

12 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

http://www.nxp.com/MCUXpresso

3.2 Installing the SDK

MCUXpresso SDK is a comprehensive software enablement package designed to
simplify and accelerate application development with NXPs microcontrollers based on
Arm® Cortex®-M cores. The MCUXpresso SDK includes production-grade software with
integrated RTOS (optional), integrated stacks and middleware, reference software, and
more. It is available in custom downloads based on user selections of MCU, evaluation
board, and optional software components.

Before building the SLN-VIZN-IOT SDK example projects, the target SDK needs to be
imported into MCUXpresso IDE.

The MCUXpresso SDK for the SLN-VIZN-IOT can be found in the SLN-VIZN-IOT
Software Collateral.zip folder downloaded from the website using an SLN-VIZN-IOT
collateral activation code obtained when purchasing a SLN-VIZN-IOT Kit.

£ SLN-VIZN-IOT Software Collateral 1P0

Figure 8: Extracting Software Collateral Zip

To import the SDK into MCUXpresso IDE, extract the zip folder and drag the SLN-VIZN-

IOT xPx SDK.zip into the Installed SDKs window in MCUXpresso IDE.

13

| ¥ SLN-VIZN-IOT 1P0 SDK |

Drag and Drop

Figure 9: Drag and Drop SDK

SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020

NXP Semiconductors

For each package, a confirmation window will pop-up. Select OK to validate.

@ MCUXpresso IDE SDK import - O X

@ Are you sure you want to import the following SDK in the common 'mcuxpresso’ folder?

CA\Users\nxf38336\Downloads\SLN-VIZN-10T Software Collateral 1POVSLN-VIZN-10T 1P0 SDK.zip

[[]Do not ask for confirmation on SDK Drag and Drop install

Cance

Figure 10: Import SDK Confirmation Window

Once the package has been imported, it will be displayed in the Installed SDKs window
in MCUXpresso.

[0 Installed SDKs Siq [Properties [#] Problems [Console ™ Terminal |54 Image Info G Debugger Console = 0
®al= gl

[Installed SDKs

To install an SDEK, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view. [Commen 'mcuxpresso’ folder]
Name SDK Version Manifest Version Location
(B T isDK_2.x SLN-WIZN-10T ;250 3.4.0 @‘ <Commonz'\SLN-VIZN-10T 1P SDK zip

Figure 11: SDK Import Successful

3.3 Import a SLN-VIZN-1OT Project

The SLN-VIZN-IOT SDK allows you to import existing application examples as a
development starting point. The following steps will show you how to import one of these
example projects into MCUXpresso IDE.

From the Quickstart Panel, select Import SDK example(s).

(Import SDK example(s)...

Figure 12: Import SDK Examples

14 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

For each SDK you have installed into MCUXpresso, a corresponding image will be
shown. Select the sln_vizn_iot image and then proceed by selecting the Next button.

Figure 13: Import SLN_VIZN_IOT Examples

The import wizard will then display all the example applications that are available to
import. For this guide we will be focused primarily on the sin_vizn_iot_userid_oobe
application. This is the application that comes flashed by default on your SLN-VIZN-IOT
kit.

If your kit's flash has been completely erased, you will also need the
sln_vizn_iot_bootloader and sln_vizn_iot_bootstrap projects found under
sln_boot_apps as well in order for the sIn_vizn_iot_userid_oobe application to work.

me

> [E demo_apps

v [E sin_boot_apps
[g bootloader
[5k bootstrap
v @] £ sin_vision_apps
& 5 userid_oobe
[1 = userid_cobe_nosdram

Figure 14: Import Examples

15 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Once the projects have successfully been imported, they will be listed in the project explorer ready
to be built and run.

5 Project Explor 53 | &, Peripherals+ iilf Registers *pFaults = O

<|_|l=

=
=f5=N| |~

=L sln_vizn_iot_bootloader
= sln_vizn_iot_bootstrap
== cln_vizn_jiot_userid_cobe

16 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

4 Building and Programming

The bootstrap project is the first application that is booted. The bootstrap is a minimal
FreeRTOS application that is responsible for image verification.

The bootloader project is a second stage bootloader that manages jumping into the
UserlD OoBE application. This application can be used for any additional bootloader
functionality needed for the product. The bootloader is also responsible for Mass Storage
Device drag-and-drop firmware updates via USB.

The UserID O0BE is the out-of-box application used to demonstrate the capabilities of
the Oasis Lite machine learning engine for face and emotion recognition. This is the
application (in addition to the bootloader and bootstrap) that is flashed on your SLN-VIZN-
IOT kit by default.

4.1 Build a SLN-VIZN-IOT Project

In the Project Explorer window, select the project you intend to compile.

5 Project Explor EJE] T, Peripherals+ (ilf Registers * Faults = O
2S| @8 % @ -

s T=% cln_vizn_iot_bootloader
3 sin_vizn_iot_bootstrap

5 == sln_vizn_iot_userid_oobe < Debug=

Figure 15: Project Explorer - Highlight Project

From the Quickstart Panel, select the option Build to start the compilation and linking of
the application currently highlighted in the Project Explorer pane.

Project: sin_vizn_iot_userid_oobe [Debug]

Figure 16: Build Project

17 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Wait for MCUXpresso to finish the build process. This should take a relatively short time
due to the small size of the application.

Bl Conscle 52
COT Build Console [sln_vizn_iot_userid_ooche]
UUHHU_I‘LH"_“JI‘I_LJ.LI:N)E): g ao £ Mo Y. oun
BOARD_FLASH FACERECSNAPSHOT_DE: @ GB 512 KB &, aa%
BOARD_SDRAM: 12717644 B 16 MB 75.86%

SRAM_DTC: 18216 B 128 KB 13.98%

SRAM_ITC: @ GB 128 KE B.80%
SRAM_OC_NON_CACHEABLE: B GB 256 KB 8.08%
SRAM_OC_CACHEAELE: @ Gb 256 KB 8. Be%

BOARD_SDRAM FACERECSNAPSHOT_DE: 13588 KB 14 MB 94.17%
BOARD_SDRAM NONCACHEABLE: B Gb 2 MB 8.00%

Finished building target: sln_vizn_iot_userid_oche.axf

C:/nxp/MCUXpresseIDE_11.@.1_2563/ide/plugins/com.nxp.mcuxpresso. tools.win32_1

Performing post-build steps

arm-none-eabi-size "sln_vizn_iot userid_occbe.axf"; # arm-none-eabi-ocbjcopy -
text data bss dec hex filename

1300984 22364 26529380 27942648 1aa5ef8 sln_wvizn_iot userid_cobe.axf

11:12:51 Build Finished. @ errors, 46 warnings. (took 1m:48s.188ms)

Figure 17: Console 'Build' Output

If you received a message like the one shown above, your SLN-VIZN-IOT has been
successfully built.

Additionally, if you have use for a binary file instead of the .axf generated by default,
simply right-click on the .axf you wish to convert and go to Binary Utilities -> Create
binary. MCUXpresso stores generated .axf and .bin files under your project’s Debug
folder. Shown below is an example of how you can create a binary using a .axf file:

video

B New >
video-utilities
wireless (@ EasyShell >
i Open
i sln_vizn_jot_userid_oobe.axf - [arm/I
> # sln_vizn_iot_userid_oobe.axf - [arm/le] Open With 5
& makefile
% objects.mk Show in Local Terminal >
A ol i 5 /.
4 sIn_vizn_iot_userid_oobe_Debug_library. Copy e
n_jot_userid_oobe_Debug_memo ot .
n_iot_userid_oobe Debug.ld) Feste s
n_iot_userid_oobe.bin @ Delete Delete
_vizn_jot_userid_oobe hex Move..
— Rename... F2
() Quickstart Panel % Variables | (@ Breakpoi Properties 5 Problems &d €
o] Import..

- MCUXpresso IDE - Quickstart F 2 eqport...

sln_vizn_iot_userid_oobe
105) Project: sin_vizn_iot_userid_oobe [Debug] i oy

. . Build Project AM: 120812816 B 16
~ Create or import a project Refresh s G 21848 B 128
. New project mc: @ 6B 128
o) - Run As 5 (CHEABLE: @ GB
Import SDK example(s)... ? A BLE: o GB 25¢
® Import project(s) from file system.., | 3k DebugAs > (CERECSHAPSHOT_DB: ¢
Profile As 5 MNCACHEABLE: @ 6B
~ Build your project N— , [ing target: sln_vizn_iot_use
4, Build Binary Utilities > Create hex
ra
& Clean Tools > Create binary
- Debug your project [Validate Create S-Record
¥, Run C/C++ Code Analysis Disassemble
¥ Debug Team > ELF Information
Compare With > Size
~ Miscellaneous Replace With > Strip debug symbols

Process symdefs file

£ NXP MIMXRT106F:000A” (sin vi... oobe) Properties Alt+Enter

Figure 18: .axf to .bin

.bin files are useful for flashing with OTW, MSD, and the automated manufacturing
tools. Each of these features are described in greater detail later in the guide.

18 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

4.2 Flash and Debug SLN-VIZN-IOT Project

With the userid_oobe project compiled, it is now time to program its associated binary
into flash.

Flashing the SLN-VIZN-IOT kit will require a Segger J-Link with a 9-pin Cortex-M
Adapter and V6.62a or newer of the J-Link Software and Documentation Pack found
on the Segger website at:

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack.

Figure 19: J-Link Plus and 9-Pin Cortex-M Adapter

Note: MCUXpresso IDE 11.1 currently comes with Segger J-Link V6.5x installed, however this WILL NOT
work with the SLN-VIZN-IOT and must be upgraded to at least V6.62a. If you are unsure about which
version of J-Link software you have, it is recommended to upgrade to the latest version just in case.

Older versions of J-Link Software and Documentation Pack will not have the proper
configuration settings for the SLN-VIZN-IOT and will therefore be unable to flash the
board.

To begin the process of flashing the kit, attach your J-Link debug probe into the header
shown below.

2.4/50M2

146153

Figure 20: SLN-VIZN-IOT JTAG Header

19 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

Next, select the Debug option found under the QuickStart panel in MCUXpresso to start
the process of loading the binary into the flash and begin debugging. Like the Build

option, Debug will only flash and debug the project currently highlighted in the Project
Explorer panel.

Project: sln_vizn_iot_userid_oobe [Debug]

Figure 21: Quickstart Panel - Debug

Select the J-Link probe that is connected to your kit and press OK.

& Probes discovered m} s

Connect to target: MIMXRT 106F:0000A
1 probe found, Select the probe to use:

Available attached probes

Mame Serial number/ID Type Manu... 1DEDebug Mode
EX J-Link PLUS 600104118 Use SEGGER All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
PR&E Micro probes

SEGGER J-Link probes

Probe search options

Remember my selection (for this Launch configuration)

@ [ok || cance

Figure 22: Probe Discovery Window

20 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

This will launch the flashing tool and proceed to flash the binary associated with the
currently selected project.

E SEGGER J-Link Y&.62a - Flash download (1792 KE)
corvers [-
- I -
SR sot
\erify 0% 0.000s
Programming rangs (xe03CE000 - Meb03CEBFFF (16 KE) 0.000s

Figure 23: Flash Download in Progress

Once flashed, the program will automatically halt at main, indicated by the first instruction
in main being highlighted and pointed to.

[€] main.c EX] = g
672 /*! ~
68 * (ibrief Main function
69
7@= int main(void)
71| {

72 /* Init board hardware. */
73 BOARD_InitHardware();

74

75 /* Init pins (camera, display, pcal, ...) */
76 BOARD_I2C_ReleaseBus();

77 BOARD_InitCSIPins();

78 BOARD_InitLPSPI4Pins();

79 // BOARD_InitIDispPins();
30 BOARD_InitCameraRescurce();
81 BOARD_InitA71CHPins();

32 BOARD_InitPCALResource();
83 BOARD_InitDEBUG_UARTPins();
a4 // BOARD_InitLPUARTSPins();
85 BOARD_InitFlash();

86 BOARD_InitBluetooth();

87 BOARD_InitWifi();

88

39 FileSystem_Init();

98 SysState_Init();

9l

a7 wizn ani dnitih: "

Figure 24: Debug Begin

Finally, press the Run button found in the toolbar to begin running the application.

RN

Figure 25: Debug Toolbar - Run Button

To learn more about debugging in MCUXpresso, check out the MCUXpresso User
Guide found here:

https://www.nxp.com/docs/en/user-guide/MCUXpresso IDE User Guide.pdf

21 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf

5 Bootloader

The SDK provided enables two forms of firmware update capability in addition to flashing
via J-Link: An Over-the-Wire (OTW) interface that supports UART flashing and a USB
Mass Storage Device (MSD) interface. Either option can be selected at boot time, but
once one of them is running, the other is turned off.

5.1 Application Flow

The boot flow is described in detail in the Security Architecture section of this document.

Once the boot flow reaches the bootloader, the bootloader must decide what to do. The
below shows the three options available to the bootloader. The subsequent sections
describe the OTW and USB MSD modes.

MCU ROM
Bootloader

Bootstrap

[N

Button Trigger FICA OTW

Update?

USB MSD
Update

Jump to Main OTW Update
Application

o

Bootloader

Figure 26: Bootloader Flow

5.2 Over-the-Wire (OTW) Updates

The OTW update interface currently supports UART but can be extended to support any
serial interface including SPI, TCP sockets or even I12C. The OTW update is driven using
a simple JSON interface, making it easy to implement host side code.

OTW must be triggered by setting a flag in the FICA area. In the SDK as delivered by
NXP, this is accomplished in the demo application via the shell or eRPC host interface.

22 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5.2.1 Transfers

Each transfer contains two pieces: a 4-byte size field and a JSON message. This allows
the OTW data interface to be compatible across a wide range of interfaces.

Packetl -
1 See j—

_ 4bytes /

h

X RX

| Packel2 ™60 N data

Size bytes /

-

Figure 27: Transfer Format

Each transfer is followed by a transfer response.

FWUPD).QTE_OTW UART Connection FWUPDATE_OTW
Client Server

SLN-LOCAL-IOT
SLN-VEZN-IOT

¥

Receive Request

Packetl "
1. Get S
Send Request L e

Packet2 | 2. Get JSON data
Receive Response
[1Getsze | et
Packet2 Send Response
2. Get JSON data

Process Response

Figure 28: Request/Response Flow

5.2.2 JSON Messages

The OTW interface is driven entirely by JSON messages. This allows developers to easily
create and debug client applications.

There are two types of messages passed: requests and responses. Requests must be
made in the following order to successfully perform a firmware update:

Start

Block

Stop

Activate image
Start self-check

RO

23 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5.2.2.1 Start Request
This is the first request that must be sent to start a firmware update.

{
"messageType":1,
"fwupdate_message": {
"messageType":0,
"fwupdate_common_message": {
"messageType":0,
"job_id": <Job ID string>,
"app_bank_type": <Flash Bank: ‘1’ for A 2’ for B>,
"signature": <RSA Signature of image to be loaded>,
"image_size": <Image Length>,
}
}
}

5.2.2.2 Block Request

Block requests are sent for each “chunk” of data to be programmed. Block sizes can be
any size, though it’'s suggested that they be as large as possible. The example script in

the SDK sends 4800 bytes per block request.

{
"messageType":1,
"fwupdate_message": {
"messageType":1,
"fwupdate_server_message": {
"messageType":0,
"block": <Base64 encoded block of data>,
"encoded_size": <Size of encoded block>,
"block_size": <Size of block in bytes>,
"offset": <Offset from base of flash>,
¥
}
}

5.2.2.3 Stop Request

{
"messageType":1,
"fwupdate_message": {
"messageType":1,
"fwupdate_server_message": {
"messageType":1
¥
}
¥

5.2.2.4 Activate Image Request

{
"messageType":1,
"fwupdate_message": {
"messageType":1,
"fwupdate_server_message": {
"messageType":3
¥
}
¥

24 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020

NXP Semiconductors

5.2.2.5 Start Self-Test Request
{

"messageType":1,
"fwupdate_message": {
"messageType":1,
"fwupdate_server_message": {
"messageType":2
}

}
}

5.2.2.6 Response Format
{

"error": <Operation return code>,

}
5.3 Mass Storage Device (MSD) Update

The bootloader application supports firmware update over USB Mass Storage Device
(MSD). This allows the user to re-flash the main application binary (note, not the bootstrap
and bootloader) without a J-Link probe. If the bootstrap and bootloader need to be
updated, you must use the J-Link probe.

The MSD feature by default bypasses the signature verification described in Security
Architecture to allow an easier development flow because signing images can be a
process not suitable for quick debugging and validation.

To enable MSD mode, hold SW1 while the board is powering on.

Figure 29: MSD Enablement Button

Upon success, the normal boot sequence with alternating red, blue and purple LEDs will
take place, followed by the blinking of a purple LED on the front of the board every 2
seconds indicating the board is now in MSD mode. You may now let go of the button.

25 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Figure 30: MSD Mode Lights

In addition to the flashing lights, the board will also enumerate as a USB Storage Device
by your computer’s OS.

~ Devices and drives (2)

0 05Disk (G LISE Drive (D)
al =
o \,1| I
‘ 214 GE free of 476 GB ‘ 9,96 ME free of 9.97 MB

Figure 31: MSD USB Drive Enumeration

To flash a new binary, drag and drop the new binary onto the USB Drive associated with
the kit. If your SLN-VIZN-IOT kit is running from Application Bank A (see Device Memory
Map), you must provide a binary for Application Bank B and vice versa. This is to prevent
the overwrite of the application to be run in order to protect against a case where flashing
is interrupted, and a corrupted image gets written and executed.

As there is currently no way to know which application bank is being run from, it is recommended to try
dragging and dropping an application for each bank and seeing which one works.

sln_vizn_iot_userid_oobe disp_huatian 2/3/2000 10:28 AM BIN File

USB Drive (D:) —

+ Copy to USB Drive (D:)

LY 9.96 MB free of 9.97 MB

Figure 32: Dragging-and-Dropping New Binary

26 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

The new binary will be copied onto your SLN-VIZN-IOT, and the kit will automatically
restart once flashing is complete.

5.3.1 Generate Application Bank B Binary

As previously mentioned, if the board is currently running from Application Bank A, MSD
drag-and-drop flashing will require a binary created for Application Bank B and vice versa.
Currently the active application flash bank information is not exposed to the user and can
only be found through attempting to flash both a Bank A and Bank B application with
MSD.

To generate a binary for Application Bank B in MCUXpresso you must change the flash
address for your kitin MCUXpresso. To do so, right-click on the sIn_vizn_iot_userid_oobe
application in in the Project Explorer panel and click on Properties.

Under the Properties dialog window that appears, click the drop-down arrow next to
C/C++ Build, and select MCU settings. Change the Flash address from 0x60300000 to
0x60D00000, then click Apply and Close.

v C/C++ Build

MCU settings

2

Update Flash Address

3

Flash BOARD_F.. Flash 0x60d00000REEW111] MIMXRTT...

Apply and Close

Figure 33: Create Flash Bank B Binary

Rebuild your application using the steps found under Building and Programming,
making sure to generate a binary from the .axf. The generated binary will be able to
reflash the main application when the kit is running from Application Bank A.

Be sure to change the flash address back to 0x60300000 if trying to run debugging
using a J-Link.

27 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

6 Automated Manufacturing Tools

NXP provides a package of scripts that can be used for securely programming devices
on the production line. This collection of scripts is called Ivaldi.

6.1 About Ivaldi

Ivaldi is a package of software scripts and tools that are responsible for manufacturing
and re-programming without needing access to a J-Link.

The Ivaldi scripts make use of the serial downloader mode feature of the RT106F’s boot
ROM to communicate with an application called Flashloader that is programmed into the
RT106F. The Flashloader which is programmed into RAM then communicates with a
program called blhost which controls various parts of the chip and flash.

Ivaldi was created to focus on the build infrastructure of a customer’s development and
manufacturing cycle. Its primary focuses are:

e Factory programming and device set up

e Enabling HAB and eXIP

e Signing images for Application Banks A/B
e Writing and accessing OTP fuses

The rest of this chapter discusses general (i.e. unsecure) flashing of a device.

6.2 Requirements

The following requirements must be satisfied to run Ivaldi. It has been tested in Windows,
Mac, and Linux environments.

e OpenSSL
e Python 3.6.x with virtualenv
e Linux/Ubuntu for Windows

The package contains valuable README files. To set up the environment, follow the
README.md file located in the root folder of the Ivaldi package. Without doing this, the
tool will not work.

The Ivaldi tools are located in the “Tools” folder of the software package. Extract the ZIP
file and open the README.md to start using the tool.

6.3 Creating a Signing Entity

The basis of the security architecture implemented in the SLN-VIZN-IOT is signed
application images. Signing requires the use of a Certificate Authority (CA). NXP has its

28 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

own CA for signing applications at the factory, but the root CA is not something that is
shared with customers. The Ivaldi tools provided by NXP require signing, so the end user
must create their own CA and signing artifacts.

6.3.1 Using Ivaldi to Generate Signhing Artifacts

Ivaldi includes a script to generate all of the artifacts needed to properly sign application
binaries and generate a FICA table. Prior to running the script, the Ivaldi environment
must be set up completely as described in the README.md in the top-level directory.

After following the README, the environment should look similar to that shown below.
Take notice of the (env) at the beginning of the prompt.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $

Figure 34: Virtual Env Prompt

In the Python virtual environment, navigate to Tools/Scripts/ota_signing. Run the
generate_signing_arfifacts.py script. When running without any arguments, the usage
will be displayed.

(env) Ivaldi_sln_vizn_iot/Scripts/ota_signing $ python generate_signing_artifacts.py
veae: generate_signing_artifacts.py ca_name country code country_name state organization
ca_name: Name of CA for image signature chain of trust
country code: GB/US
country_name: CA Country Name

state: CA Country State

organization: CA Company Organization

Figure 35: generate_signing_artifacts.py Usage

Now, type in a name for your CA (my_test_ca is used as an example), along with the
required location and organization information. When prompted for passwords for the
PEM files, use the same password for all of them for this exercise. You can always
re-generate a more secure CA when you’re ready to prepare for production. The following
figure shows an excerpt from the terminal output of the generation script.

(env) Ivaldi_sln_vizn_iot/Scripts/ota_signing $ python generate_signing_artifacts.py my_test_ca US Texas
Austin NXP
Creating directories...

Creating directories...

['mkdir', 'certs', 'crl', 'newcerts', 'private', 'csr']
SUCCESS: Successfully prepared the directories

chmod directories...

Figure 36: generate_signing_artifacts.py Example

29 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

You should now have a CA and signing certificates. Reference the README.md in the
Scripts/ota_signing folder for more details about the directory structure and files that
were generated by the script.

6.4 Open Boot Programming

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $ python open_prog full.py -c my_test_ca
Signing Entity: my_test_ca
Establishing connection...
: Communication established with device.
flashloader...
: Flashloader loaded successfully.
to flashloader entry point...
: Device jumped to execute flashloader.
for device to be ready for blhost...
get-property
SUCCESS: Device is ready for blhost!
Reading device unique ID...
get-property
SUCCESS: Device serial number is SSn4ZdIJFwc=
Writing memory config option block...
fill-memory
SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...
configure-memory
SUCCESS: FlexSPI configured.
Erasing flash...
flash-erase-region
SUCCESS: Flash erased.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash with root cert...
File size 2018
File CRC ©x1blc634a
write-memory
SUCCESS: Programmed flash with certificates for this
Programming flash with app cert application A...
File size 1916
File CRC ox8710fleb
write-memory
SUCCESS: Programmed flash with certificates for this
Programming flash with app cert for bootloader...
write-memory
SUCCESS: Programmed flash with certificates for this
Programming flash with sound binaries...
write-memory
write-memory
write-memory
write-memory
SUCCESS: Programmed flash with sound binaries.
Enter pass phrase for ../ca/private/my_test_ca.app.a.
Enter pass phrase for ../ca/private/my_test_ca.app.a.
SUCCESS: sign_package succeeded.
Programming FICA table...
write-memory
SUCCESS: Programmed flash with certificates for this
Programming flash...
write-memory
SUCCESS: File written to flash.
read-memory
SUCCESS: Application entry point at 0x60002599
read-memory
SUCCESS: Application entry point at 0x20208000
Attemping to execute application...
execute
SUCCESS: Application running.

SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Figure 37: open_prog_full.py Output

6.5 (Optional) Enabling Encrypted Execute-in-Place (eXIP) and
High Assurance Boot (HAB)

The i.MX RT106F has some fundamental security enablement to protect against
unsigned images and protect high-value software running on the device. These security
features can be looked into at great detail by reading the RT1060 Reference manual in
the RT106F Documentation area or the following whitepaper
(https://www.nxp.com/docs/en/white-paper/IMXRTCROSSWP.pdf) however, the
following documentation is to detail the steps to enable the eXIP and HAB features of
the RT by using Python scripts which take the complication out of the process.

The Ivaldi tools, as well as containing automated OTW signing tools, also contain all the
tools and scripts to enable HAB and eXIP. By the end of this section, the bootstrap will
be signed to work with the HAB and the bootloader and the userid_oobe will be
encrypted with individual encrypted context. The bootloader and userid_oobe have
individual encrypted contexts to ensure that if any of the application banks are updated,
the bootloader will not need updating.

The whole package contains the following features:

e Two individual encrypted Context for bootloader and app space.

e Potential support for bootloader update called the “bootloader loader” (coming in
future releases).

e Encrypted context restoration for image failure or OTA failure.

e OTW update with eXIP support.

e Switching between eXIP and XIP for easy development.

For additional documentation, please build the docs in the Ivaldi/doc folder by following
the containing README.md
6.5.1 Preparing the Environment

The following steps assumes that the section Creating a Signing Entity has been
followed and completed, generating a CA and signing entity to create signed images. This
is used to verify the signature of the application using an app certificate and CA certificate.

It also assumed that the reader is running the tools within the Ivaldi package and the
paths are unchanged as delivered.

If not already done so, unzip the Ivaldi zip. In the top-level directory, open the
README.md and follow all the steps to create and build the environment.

31 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-rt-series/crossover-processor-with-arm-cortex-m7-core:i.MX-RT106A?tab=Documentation_Tab&lang=ko&lang_cd=ko&
https://www.nxp.com/docs/en/white-paper/IMXRTCROSSWP.pdf

After following the README, the environment should look similar to that shown below.
Take notice of the “(env)” at the beginning of the prompt.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $

Figure 38: "Virtualenv” Prompt

Additionally, it is recommended to follow the section Open Boot Programming section,
as this section will validate that all the image binaries are working correctly. There are
several failure points that could occur while enabling HAB and eXIP so following the Open
Boot Programming will help reduce potential failure points.

6.5.2 Generating the PKI and Signed Flashloader

The following instructions assume that the section Error! Reference source not found. has
been completed, as it is needed to generate the CA and application certificate that will be
loaded into the flash. It will also be used to generate the FICA table used to validate the
application signature.

The first step is to create a signed flashloader which will be used to set everything up and
communicate with blhost. The blhost tool in its simplest form is used to read and write
registers, but it communicates with a flashloader. The flashloader is a RAM-based
application that supports blhost communication. In normal circumstances, the flashloader
can be executed without having been signed, but with HAB enabled, it needs to be signed
with appropriate keys.

The secure boot scripts have been separated into two folders:

e OEM - These scripts should only be executed by the Product owner, and the
output stored in a secure environment. This is because it contains important key
information, which if lost, could brick boards or be open to copy cats/loss of image
integrity.

e MANF - These scripts will be executed on the manufacturing line. They are used
to execute the signed flashloader and communicate with the chip to encrypt the
binaries. The scripts also contain the process of generating certificates, and the
generation and programming of the FICA.

Within the Ivaldi package, navigate to the Scripts/sin_vizn_iot_secure_boot/oem folder
and open the README within. The README starts by running the setup_hab.py script
which is responsible for creating the PKI infrastructure and creating the signed
flashloader.

BACKING UP YOUR KEYS AND CRTS FOLDER IN THE IVALDI ROOT.
THIS WILL RESULT IN BEING UNABLE TO USE FLASHLOADER AND

ﬂ PLEASE NOTE, DO NOT RUN THIS MORE THAN ONCE WITHOUT

32 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

PROGRAM NEW IMAGES VIA SERIAL DOWNLOAD MODE FOR
EXISTING HAB-ENABLED DEVICES

The following shows the output of the “setup _hab.py’ script that generates the PKI
infrastructure and signed flashloader.

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ python3 setup_hab.py

This operation will delete all previous keys. Continue? [y,n]
y

Cleaning keys and certificate directories...
SUCCESS: Cleaned keys and certificate directories...
Generating PKI tree...

SUCCESS: Created PKI tree.

Generating Super Root Keys (SRK)s...

SUCCESS: Generated SRKs.

Generating boot directive file to enable HAB...
SUCCESS: Generated boot directive file.

Generating secure boot(.sb) file to enable HAB...
SUCCESS: Created secure boot file to enable HAB.
Cryptographically signing flashloader image ...
SUCCESS: Created signed flashloader image.

Figure 39: setup_hab.py Script

After this has run, you should see in the Image_Binary folder that the signed flashloader
exists as shown below.

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ 1ls -1lrt
../../../Image_Binaries/ivt_flashloader_signed*
-rwxrwxrwx 1 cooper cooper 101376 Dec 18 17:11

../../../Image_Binaries/ivt_flashloader_signed_nopadding.bin
-rwxrwxrwx 1 cooper cooper 102400 Dec 18 17:11 ../../../Image_Binaries/ivt_flashloader_signed.bin

Figure 40: Checking the Signed Flashloader

6.5.3 Creating the Images

The following section describes how to generate the images and put them into the correct
folder in preparation for creating the artifacts to load into the devices flash encrypted.

The next step is to ensure all the binaries are ready and located in the DefaultBinaries
folder in the root directory of Ivaldi. To do this, ensure you have the bootstrap, bootloader
and userid_oobe_demo imported into the MCUXpresso workspace as shown in the
following figure.

e sln_vizn_iot_userid_ocobe <Debug>

Figure 41: Importing the Applications for HAB and eXIP

33 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Before creating the images, a modification needs to be made to the bootstrap. The IVT
gets created by the Ivaldi scripts which means it needs to be removed from the default
binary. To do this, right click on the bootstrap project and go to Properties -> C/C++
Build -> Settings -> Preprocessors and set the XIP_BOOT_HEADER_ENABLE and
XIP_BOOT_HEADER_DCD_ENABLE to zero as shown here.

Settings

Configuration: | Debug [Active] Manage Configurations.

) Tool Settings

100 not search system directories (-nostdinc)
[IPreprocess only (-B)

Defined symbols (-D)

CPU_MIMRT 106D

oM o

| O et Diaiog = = X

B £ Doy
Defined symbols (D) Defined symbols (-0)
XIP_BOOT_HEADER_ENABLE-0] J0P_BOOT_HEADER_DCD_ENABLE={|
ok Cancel oK Cancel
Restore Defoults| | Apply Restore Defautts Apply
(2] [pply and Close Cancel (2] Appy and Close Cancel

Figure 42: Unsetting the XIP Boot Header

After this change, hit the build button to generate an image for the bootstrap. As the Ivaldi
scripts only accepts an srec file, it is necessary to generate one. Srec files can be
generated using MCUXpresso’s “binary utilities.”

Navigate to the Debug folder of the bootstrap application, right click on the .axf file and
navigate to Binary Utilities -> Create S-Record.

5 # sin_vizn_iot bootstrap.axf - [arm/le] o N Corte M cares, including LP
" makefile comy and debugging featt
) objects.mk EasyShell N debugging, and integrated con
() iot_bootstrap_Debug_library.Ic Open Documentation
iot_bootstrap_Debug_memeory For information on how to get s
fot_bootstrap_Debug.ld Cpeniiin & please consult the supplied MC
ot bootstrap.hex Show in Local Terminal > * Help = MCUXpresso IDE |
e fot_bootstrap.map Copy Cri+C Further product decumentation
by mk oot oy = Help - Help Contents
B doc " o The MCUX; IDE de
1 e MCUXpresso IDE docume
scriptjlink B Delete Delete P!
B sln_vizn_iot_userid_oobe Move.. Help us improve MCUXpresso Il
Rename. &2 MCI ¥nressn INE can send an
() Quickstart Panel 3% | H=Variables (@ Brezkpo Properties | i Problems [Cons
2] Import..
. MCUXpresso IDE - Quickstart | = eqport..
15) Project: sn_vizn_iot_bootstrap [Debug]
z 2 Build Project
~ Create or import a project T Fs Irag and drop an SDK (zip fileffolder)
New project. SDK Vi
) Pro=e © Runas N ———
Va Import SDK example(s)... z 41z 220
& Import project(s) from file system... | Wk Debug As > Lior-opa 250
Profile As >
~ Build your project — R
A, Build Binary Utilties > Create hex
& Clean Tools > Create binary
- Debug your project [Validate Create S-Record
. Run C/C++ Code Analysis Disassemble
A Debug Team > ELF Information
Compare With > Size
~ Miscellaneous Replace With > Strip debug symbols
i Process symdefs file
O NXP MIMXRT106Fx00eA* (sln viz...tstrap) Properties Alt+Enter Z

Figure 43: Generating the srec

34 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Create S-Record generates a “.s19” file, while our script requires “srec” files. Simply
right-click on the s19 file generated in the previous step and rename it like shown below.

sln_vizn_iot_bootloader.s19 a Rename Resource O X
4 sources.mk

&= doc WEVEETL =M< vizn_iot_bootloader.srec
scriptjlink [Update references

PL <in vizn iot hontstran
e e T Open pref
) Quickstart Panel 3% H= Variables (@ Breskp N preferences

- MCUXpresso IDE - Quickstart

|_ee | Project: sin_vizn_iot_bootleader [Debug]

Create or import ject
 Create or import a proje: Preview > Cancel

— . MNew project...

Figure 44: Changing File Type to srec

Continue to build the bootloader and userid_oobe_demo in the usual way. When these
applications are built, it is required to generate binary files. Build these by navigating to
the Debug folder in both the bootloader and userid_oobe_demo application, right click on
the .axf file Binary Utilities -> Create Binary

2 <3 _oobead [arm/le] TG ey
'@ FasyShel ’ . - fermle] debugging, snd nfegrated configurs
Open b (@ EasyShel
Open With > [Forn R
Show in Local Terminal > = =iy b
Showin Local Terminal >

o
Coy Ctrl+C
Paste Ctrl &7
- Paste Ctrl+V
B Deete Delet O e i
B Delete Delete
Move..
bdoc Rename. R fuo Move
kstart Panel §2 | H= Variables (@ Breakpoints Rename... F2

kstart Panel 03 H= Variables

@ Breakpoints

s

MCUXpresso IDE - Quickstart Pan [Egort
n ot

2] Import. nt
MCUXpresso IDE - Quickstart Panel = Eqor.
Project: sin_vizn_jot_bootloader [Debug]

Build Project i fan_iot_userid_oobe [Debug] T
T Pt v F5 ldrop an SDK (zip fileffolder) into th ject Refresh F5
B8 New project... SDK Version
o Run As > lew project.
Import SDK example(s). © Deo) 220 mport DK example(] © Runas
& Import project(s) from file system.. ¥ Debug " 250 ® Import project(s) from file system. H¥ Debug As >
Profile A: 4 Profile A >
|d your project Utilt > [CE Utilties
&, Build Binary Utilities > Create hex 4 Build Binary Utilities > Create hex
& Clean Tools > [EmTe— & Clean Tools >
. < i |
1 your project & Validsic Create S-Record e —— & Validate =
7, Run C/C++ Code Analysis Disassemble 7, Run C/Cr+ Code Analysis Disassemble
4 Debug Team > ELF Information A Debug Team >
Compare With > Compare With >
ellancous Replace With > cllaneous Replace With >
[P MIMXRT 106 Fio00A* (sln wi..loader) 3 /st Properties Alt+Enter MIMXRT 106Fc00A” (el vi... oobe) & /. Properties Alt+Enter

Figure 45: Generate Bootloader and userid_oobe Binary

Once the collateral has been created, copy the two binaries and srec into the
Ivaldi/Image_Binaries package as shown here.

| sln_vizn_iot_bootloader.bin 12/12/2019 1:54 PM BIN File 350 KB
| sln_vizn_iot_bootstrap.srec 12/19/2019 12:08 .. SREC File 185 KB
|| sIn_vizn_iot_userid_oobe.bin 12/18/2019 4:59 PM BIN File 1,381 KB

Figure 46: "Image_Binaries" Expected Folder Contents

6.5.4 Generating Secure Binary

This section will describe the instructions on how to create a secure binary in preparation
to programming it into the flash of the device.

35 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Navigate to the Scripts/sin_vizn_iot_secure_boot/oem folder and open the
secure_app.py python script. Inside this file contains the path and the file names of the
binaries that will be used to create the secure binary. The following figure shows these
path definitions inside the secure_app.py script.

DEF_HAB_PATH IMG_DIR + "/sln_vizn_iot_bootstrap.srec"
DEF_BOOT_PATH = IMG_DIR + "/sln_wvizn_iot_bootloader.bin"

DEF_APP_PATH = IMG_DIR + "/sln_vizn_iot_userid_cobe.bin"

Figure 47: Secure App File Names

It's important to know that the file names that are in this file are the names the script will
look for. If the files in your Image_Binaries folder differ, please change the names of the
files or modify the script to match. If the files do not match, unpredictable behavior will
occur.

After aligning the files, run the script by executing: “python3 secure_app.py”
or to run without eXIP enabled: “python3 secure_app.py --signed-only”
The output of the script when run with eXIP is shown below:

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ python3 secure_app.py
Encrypting app image ...
SUCCESS: Created encrypted image.

Creating encrypted app file ...
SUCCESS: Created encrypted app file.

Figure 48: secure.py output for securing images

The output shows the combining of the images into one consolidated, secure image.
Navigate to the Image_Binaries directory and locate the
‘boot_crypt_image_productionlv0.sb” or “boot_sign_image_ productionlv0.sb” in
the case of signed only. This will be used in the later section when programming the
devices flash.

6.5.5 Enabling High Assurance Boot (HAB)

High Assurance Boot (HAB) is a feature of the RT106F that forces the ROM (Read Only
Memory) to only boot into a signed image. This ensures image integrity and prevents
physical and remote attacks from power on.

To execute the following steps, move the jumper J27, which is located on the top
of the board into the “0” position.

36 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

The following instructions will show how to enable the HAB on the RT106F using the PKI
infrastructure created in section Error! Reference source not found. as well as using the
signed flashloader to implement it.

Navigate to the “Scripts/sin_vizn_iot_secure_boot/manf” from the Ivaldi root and
locate the “enable_hab.py” python script.

To enable HAB, run the “enable_hab.py” script as shown here.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/manf $ python3 enable_hab.py
Establishing connection...

SUCCESS: Communication established with device.
Loading flashloader...

SUCCESS: Flashloader loaded successfully.
Jumping to flashloader entry point...

SUCCESS: Device jumped to execute flashloader.
Waiting for device to be ready for blhost...
get-property

SUCCESS: Device is ready for blhost!

Reading device unique ID...

get-property

SUCCESS: Device serial number is Rin4zdJJIhA=
Writing memory config option block...
fill-memory

SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...

configure-memory

SUCCESS: FlexSPI configured.

Erasing flash...

flash-erase-region

SUCCESS: Flash erased.

Loading secure boot file...

receive-sb-file

SUCCESS: Loaded secure boot file.

Resetting device...

reset

SUCCESS: Device Permanently Locked with HAB!Creating encrypted app file ...
SUCCESS: Created encrypted app file.

Figure 49: Enabling HAB using enable_hab.py

PLEASE NOTE, IF YOU LOSE THE SIGNED FLASHLOADER AND
CERT/KEYS, THE BOARD WILL NO LONGER BE FUNCTIONAL AS HAB
ENSURES ONLY SIGNED IMAGES CAN BOOT.

6.5.6 Preparing for Programming the Device

The following section describes the steps that need to be executed to ensure all the
artifacts are available in preparation for programming the device. It is assumed that the
section Creating a Signing Entity seen followed to generate a CA and Application
certificate.

Copy all the file system generated files to the Image_Binaries folder within the Ivaldi root
directory. The files that need to be copied are:

e app_crt.bin — This is the public image signing certificate

37 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

e ca_crt.bin — This is the public image CA certificate
e fica_table.bin — This is the Flash Image Configuration Area generated when
creating a signed bootloader and userid_oobe_demo.

At this point, your Image_Binaries folder should look similar to the following:

~

MName ~ Date modified Type Size

@ .gitignore 12/11/2019 5:47 Git Ignore Source ... 1 KB
| fica_table.bin 1 BIM File 1 KB
| my_test_ca.app.a.bin 121 BIM File KB
| my_test_ca.root.ca.bin 12113/ BIM File KB
| sln_vizn_iot_bootloader.bin 1212/ BIM File 350 KB
| sln_vizn_iot_bootstrap.bin 12/12 5 BIM File T0KB
| sln_vizn_iot_userid_cobe.bin 12/13/201912:53 ... BIM File 1,415 KB

Figure 50: "Image_Binaries" Content

6.5.7 Enabling and Programming the Signed and Encrypted Binaries

Encrypted Execution in place (eXIP) is a feature of the i.MX RT106F that enables the chip
to execute and decrypt on the fly allowing images to be store into external flash encrypted
uniquely per part. This gives product makers safe comfort that their IP is protected, and
physical attacks aren’t possible. It also means that the device cannot be flashed with
malicious firmware that can be executed, as the device would fail with an encryption error.
If the security of the device is compromised, it would also mean that any firmware bad
actors are able to obtain could not be programmed into another device due to the unique
nature of the encryption.

The “customer_prog_sec_app.py” python script does several things.

¢ Runs the signed Flashloader for configuration
e Erase the current flash
e Programs the following:

o Signed Bootstrap

o Encrypted/Unencrypted bootloader and userid_oobe_demo

o Application image signing certificate

o CA Image certificate

o Device key and certificate
To execute the following steps, move the jumper J27, which is located on the top
of the board into the “0” position.

To enable this feature, navigate to the Scripts/sin_vizn_iot_secure_boot/manf folder
in the Ivaldi root.

Run the following command “python3 customer_prog_sec_app.py” as shown below.

38 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/manf $ python3 prog_sec_app.py -c my_test_ca
Establishing connection...

SUCCESS: Communication established with device.
Loading flashloader...

SUCCESS: Flashloader loaded successfully.

Jumping to flashloader entry point...

SUCCESS: Device jumped to execute flashloader.
Waiting for device to be ready for blhost...
get-property

SUCCESS: Device is ready for blhost!

Reading device unique ID...

get-property

SUCCESS: Device serial number is Rin4zdJJIhA=
Writing memory config option block...

fill-memory

SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...

configure-memory

SUCCESS: FlexSPI configured.

Erasing flash...

flash-erase-region

SUCCESS: Flash erased.

Programming flash with root cert...

File size 2018

File CRC ©x2f2114b

write-memory

SUCCESS: Programmed flash with certificates for this
Programming flash with app cert application A...
File size 1916

File CRC ©xf831a49

write-memory

SUCCESS: Programmed flash with certificates for this
Programming flash with app cert for bootloader...
write-memory

SUCCESS: Programmed flash with certificates for this
Enter pass phrase for ../ca/private/my_test_ca.app.a.
Enter pass phrase for ../ca/private/my_test_ca.app.a.
SUCCESS: sign_package succeeded.

Programming FICA table...

write-memory

SUCCESS: Programmed flash with certificates for this
Programming flash with secure app file...
receive-sb-file

SUCCESS: Programmed flash with secure app file.

Unpower module, move the boot jumper in BOOT_MODE_1, and restore power

Figure 51: Using "cust_prog_sec_app.py"

This will start the manufacturing process to bring a factory new device (empty flash) to a
device running a signed bootstrap (HAB enabled) and encrypted bootloader and
userid_oobe_demo stored into flash.

If done correctly, the device will boot and run as described in the UserID OoBE Demo
section.

PLEASE NOTE, THE LOCK_DEVICE.PY SHOULD ONLY BE USED IN
PRODUCTION AS THIS DISABLES DEBUGGER ACCESS

39 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

7 Filesystem

The SLN-VIZN-IOT has implemented a custom file system to manage files on-chip. A
custom file system is used because:

The device executes code from flash (XiP) which means it needs to read flash from RAM
functions.

HyperFlash has 256 KB sector sizes which do not allow for the granularity of files.

Update in-place features have been added to allow the updating of a big sector without a
costly (in time) erase.

Within Ivaldi, there is a script that converts any file into a filesystem-compatible binary file.
Any file that gets programmed to the filesystem must first pass through this script. This
script is called file_format.py and is located in Scripts/sin_vizn_iot_utils.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_iot_utils $ python file_format.py my_test_file.txt
my_test_file.bin

File size 3475985
File CRC ©@xf83a5ca3

Figure 52: file_format.py Usage

40 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

8 Document Details

8.1 References

The following references are available to supplement this document:

http://www.nxp.com/MCUXpresso MCUXpresso IDE Download

https://www.nxp.com/docs/en/user-

quide/MCUXpresso IDE User Guide.pdf

MCUXpresso IDE User Guide

SLN-VIZN-IOT User Guide

https://www.nxp.com/mcu-vision SLN-VIZN-IOT Home Page

SLN-VIZN-IOT Power Reference

Table 3: Reference Documents

8.2 Acronyms, Abbreviations, & Definitions

Acronym fleaning Definition)

FTDI Future '_I'echnology Devices
International

GUI Graphic User Interface

10T Internet of Things

IVT Instruction Vector Table

JTAG Joint Test Action Group

MANF Manufacturer

MCU Microcontroller Unit

MEMS Micro-Electro-Mechanical
System

MSD Mass Storage Device

OEM Original Equipment
Manufacturer

OoTW Over the Wire

OTP One Time Programmable

ROM Read Only Memory

RTOS Real-Time Operating
System

SDK Software Development Kit

UART Unlv_ersal as_ynchronous
receiver-transmitter
Table 4: Abbreviations and Definitions

41 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

http://www.nxp.com/MCUXpresso
https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
https://www.nxp.com/mcu-vision

8.3 Revision History

Date Version Details of Change Author Reviewers
Complete revamp;
2/11/20 Production 1.0 | split UG into UG + Cooper NXP
DG Carnahan
19 December | Release 0.5 Added Cooper NXP
Manufacturing Carnahan
tools/security info
12 November | Release 0.4 Revision Cooper NXP
Carnahan
30- Draft 0.1 Initial Draft Cooper NXP
September Carnahan
Table 5: Revision History
42 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

How to Reach Us:

Home Page:

Www.nxp.com

Web Support:

WWW.NXp.com/support

arm

43

Information in this document is provided solely to
enable system and software implementers to use
NXP products. There are no express or implied
copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the
information in this document. NXP reserves the right
to make changes without further notice to any
products herein.

NXP makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any
liability arising out of the application or use of any
product or circuit, and specifically disclaims any and
all liability, including without limitation consequential
or incidental damages. “Typical” parameters that may
be provided in NXP data sheets and/or specifications
can and do vary in different applications, and actual
performance may vary over time. All operating
parameters, including “typicals,” must be validated for
each customer application by customer’s technical
experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells

7y
4\

SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

