

SN74AXCH4T245

SCES878 - MARCH 2019

SN74AXCH4T245 Four-bit bus transceiver with configurable voltage translation, tri-state outputs, and bus-hold inputs

Features

- Fully configurable dual-rail design allows each port to operate with a power supply range from 0.65 V to 3.6 V
- Bus-hold on data inputs eliminates the need for external pullup or pulldown resistors
- Operating temperature from -40°C to +125°C
- Multiple direction control pins to allow simultaneous up and down translation
- Glitch-free power supply sequencing
- Up to 380 Mbps support when translating from 1.8 V to 3.3 V
- V_{CC} isolation feature
- I_{off} supports partial-power-down mode operation
- Compatible with AVC family level shifters
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 8000-V Human-body model
 - 1000-V Charged-device model

Applications

- Enterprise and communications
- Industrial
- Personal electronics
- Wireless infrastructure
- **Building automation**

Description

The SN74AXCH4T245 is a four-bit noninverting bus transceiver that uses two individually configurable power-supply rails. The device is operational with both V_{CCA} and V_{CCB} supplies as low as 0.65 V. The A port is designed to track V_{CCA} , which accepts any supply voltage from 0.65 V to 3.6 V. The B port is designed to track V_{CCB}, which accepts any supply voltage from 0.65 V to 3.6 V. The SN74AXCH4T245 device is compatible with a single-supply system.

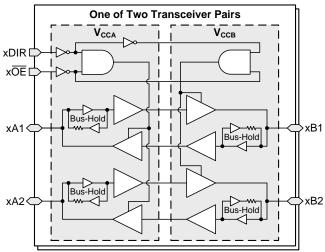
The SN74AXCH4T245 device is designed for asynchronous communication between data buses and transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level of the direction-control inputs (1DIR and 2DIR). The output-enable inputs $(1\overline{OE} \text{ and } 2\overline{OE})$ are used to disable the outputs so the buses are effectively isolated. All control pins (xDIR and $x\overline{OE}$) are referenced to V_{CCA}.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. If a supply is present for V_{CCA} or V_{CCB}, the bus-hold circuitry always remains active on the A or B inputs respectively, independent of the state of the direction control or output enable pins.

To ensure the high-impedance state of the level shifter I/Os during power up or power down, the xOE pins should be tied to V_{CCA} through a pullup resistor.

This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry ensures that no excessive current is drawn from or sourced into an input, output, or combined I/O that is biased to a specific voltage while the device is powered down.

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} is less than 100 mV, all I/O ports enter a high-impedance state by disabling the outputs.


Glitch-free power supply sequencing allows either supply rail to be powered on or off in any order while providing robust power sequencing performance.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AXCH4T245PW	TSSOP (16)	5.00 mm x 4.40 mm
SN74AXCH4T245RSV	UQFN (16)	2.60 mm x 1.80 mm

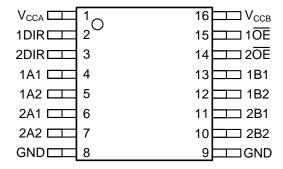
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

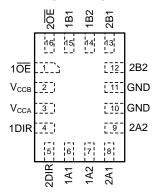
Note: Bus-hold circuits are only present for data inputs, not control inputs

Table of Contents

1	Features 1		7.1 Load Circuit and Voltage Waveforms	. 19
2	Applications 1	8	Detailed Description	. 21
3	Description 1		8.1 Overview	. 21
4	Revision History2		8.2 Functional Block Diagram	. 21
5	Pin Configuration and Functions		8.3 Feature Description	. 21
6	Specifications4		8.4 Device Functional Modes	. 23
U	6.1 Absolute Maximum Ratings	9	Application and Implementation	. 24
	6.2 ESD Ratings		9.1 Application Information	. 24
	6.3 Recommended Operating Conditions		9.2 Typical Application	. 24
	6.4 Thermal Information	10	Power Supply Recommendations	
	6.5 Electrical Characteristics	11	Layout	
	6.6 Switching Characteristics, V _{CCA} = 0.7 ± 0.05 V 8		11.1 Layout Guidelines	
	6.7 Switching Characteristics, $V_{CCA} = 0.7 \pm 0.03 \text{ V} \dots $ 9		11.2 Layout Example	
	6.8 Switching Characteristics, V _{CCA} = 0.0 ± 0.04 V 10	12	Device and Documentation Support	
	6.9 Switching Characteristics, V _{CCA} = 0.9 ± 0.043 V 10		12.1 Related Documentation	
	6.10 Switching Characteristics, V _{CCA} = 1.5 ± 0.1 V 12		12.2 Receiving Notification of Documentation Updates	
	6.11 Switching Characteristics, $V_{CCA} = 1.8 \pm 0.15 \text{ V}$ 13		12.3 Community Resources	
	6.12 Switching Characteristics, $V_{CCA} = 1.5 \pm 0.13 \text{ V} \dots 15$		12.4 Trademarks	
	6.13 Switching Characteristics, $V_{CCA} = 2.3 \pm 0.2 \text{ V}$		12.5 Electrostatic Discharge Caution	
	6.14 Operating Characteristics: T _A = 25°C		12.6 Glossary	
	6.15 Typical Characteristics	13	Mechanical, Packaging, and Orderable	
7	Parameter Measurement Information		Information	28
•	i arameter measurement information			


4 Revision History

DATE	REVISION	NOTES
March 2019	*	Initial release.



5 Pin Configuration and Functions

PW Package 16-Pin TSSOP Top View

RSV Package 16-Pin UQFN Transparent Top View

Pin Functions

PIN	N	0.	TVDE	DESCRIPTION
NAME	PW	RSV	TYPE	DESCRIPTION
1A1	4	6	I/O	Input/output 1A1. Referenced to V _{CCA} .
1A2	5	7	I/O	Input/output 1A2. Referenced to V _{CCA} .
1B1	13	15	I/O	Input/output 1B1. Referenced to V _{CCB} .
1B2	12	14	I/O	Input/output 1B2. Referenced to V _{CCB} .
1DIR	2	4	I	Direction-control input for '1' ports
1 OE	15	1	I	Tri-state output-mode enable. Pull $\overline{\text{OE}}$ high to place '1' outputs in tri-state mode. Referenced to V _{CCA} .
2A1	6	8	I/O	Input/output 2A1. Referenced to V _{CCA} .
2A2	7	9	I/O	Input/output 2A2. Referenced to V _{CCA} .
2B1	11	13	I/O	Input/output 2B1. Referenced to V _{CCB} .
2B2	10	12	I/O	Input/output 2B2. Referenced to V _{CCB} .
2DIR	3	5	I	Direction-control input for '2' ports
2 OE	14	16	I	Tri-state output-mode enable. Pull $\overline{\text{OE}}$ high to place '2' outputs in tri-state mode. Referenced to V_{CCA} .
GND	8, 9	10, 11	_	Ground
V _{CCA}	1	3	_	A-port power supply voltage. 0.65 V ≤ V _{CCA} ≤ 3.6 V
V_{CCB}	16	2	_	B-port power supply voltage. 0.65 V ≤ V _{CCB} ≤ 3.6 V

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT S
V_{CCA}	Supply voltage A		-0.5	4.2	V
V_{CCB}	Supply voltage B		-0.5	4.2	V
		I/O Ports (A Port)	-0.5	4.2	
V_{I}	Input Voltage (2)	I/O Ports (B Port)	-0.5	4.2	V
		Control Inputs	-0.5	4.2	
.,	Valence and indicate and a state in the birth improduce a surround of state (2)	A Port	-0.5	4.2	V
Vo	Voltage applied to any output in the high-impedance or power-off state (2)	B Port	-0.5	4.2	V
.,	Valta and annual data and a state of the bright and an extension (2)(3)	A Port	-0.5	V _{CCA} + 0.2	
Vo	Voltage applied to any output in the high or low state (2)(3)	B Port	-0.5	V _{CCB} + 0.2	V
I _{IK}	Input clamp current	V _I < 0	-50		mA
I _{OK}	Output clamp current	V _O < 0	-50		mA
Io	Continuous output current		-50	50	mA
	Continuous current through V _{CC} or GND		-100	100	mA
Tj	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±8000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

				MIN	MAX	UNIT
V_{CCA}	Supply voltage A			0.65	3.6	V
V _{CCB}	Supply voltage B			0.65	3.6	V
			V _{CCI} = 0.65 V - 0.75 V	V _{CCI} x 0.70		
			V _{CCI} = 0.76 V - 1 V	V _{CCI} x 0.70		
		Data Inputs	V _{CCI} = 1.1 V - 1.95 V	V _{CCI} x 0.65		
			V _{CCI} = 2.3 V - 2.7 V	1.6		
,	Lligh lovel input veltage		V _{CCI} = 3 V - 3.6 V	V _{CCI} x 0.65		
/ _{IH}	High-level input voltage		V _{CCA} = 0.65 V - 0.75 V	V _{CCA} x 0.70		
			V _{CCA} = 0.76 V - 1 V	V _{CCA} x 0.70		
		Control Inputs(xDIR, xOE) Referenced to V _{CCA}	V _{CCA} = 1.1 V - 1.95 V	V _{CCA} x 0.65		
		Iverelenced to ACCV	V _{CCA} = 2.3 V - 2.7 V	1.6		
			$V_{CCA} = 3 \text{ V} - 3.6 \text{ V}$	V _{CCA} x 0.65		
			V _{CCI} = 0.65 V - 0.75 V		V _{CCI} x 0.30	
			V _{CCI} = 0.76 V - 1 V		V _{CCI} x 0.30	
		Data Inputs	V _{CCI} = 1.1 V - 1.95 V		V _{CCI} x 0.35	
			$V_{CCI} = 2.3 \text{ V} - 2.7 \text{ V}$		0.7	
	Low lovel input voltage		$V_{CCI} = 3 \text{ V} - 3.6 \text{ V}$		0.8	V
ÏL	Low-level input voltage		V _{CCA} = 0.65 V - 0.75 V		V _{CCA} x 0.30	V
			V _{CCA} = 0.76 V - 1 V		V _{CCA} x 0.30	
		Control Inputs(xDIR, xOE) Referenced to V _{CCA}	$V_{CCA} = 1.1 \text{ V} - 1.95 \text{ V}$		V _{CCA} x 0.35	
		referenced to VCCA	$V_{CCA} = 2.3 \text{ V} - 2.7 \text{ V}$		0.7	
			$V_{CCA} = 3 \text{ V} - 3.6 \text{ V}$		0.8	
ī	Input voltage (3)			0	3.6	V
,	Output voltage	Active State		0	V _{cco}	V
O	Output voltage	Tri-State	0	3.6	V	
t/∆v ⁽²⁾	Input transition rise and f	all time			10	ns/V
A	Operating free-air temper	rature		-40	125	°C

6.4 Thermal Information

		SN74AX	SN74AXCH4T245							
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	RSV (UQFN)	UNIT						
		16 PINS	16 PINS							
$R_{\theta JA}$	Junction-to-ambient thermal resistance	126.9	130.1	°C/W						
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	49.3	70.3	°C/W						
$R_{\theta JB}$	Junction-to-board thermal resistance	74.3	57.4	°C/W						
ΨЈТ	Junction-to-top characterization parameter	8.1	4.6	°C/W						
ΨЈВ	Junction-to-board characterization parameter	73.4	55.8	°C/W						

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

STRUMENTS

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted) (1)(2)

						0	perating	free-air	temper	ature (T _A)		
PA	RAMETER	TEST	CONDITIONS	V _{CCA}	V _{CCB}	-40)°C to 85	°C	-40	°C to 125	°C	UNIT	
						MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX		
			I _{OH} = -100 μA	0.7 V - 3.6 V	0.7 V - 3.6 V	V _{CCO} - 0.1			V _{CCO} - 0.1				
			I _{OH} = -50 μA	0.65 V	0.65 V	0.55			0.55				
			I _{OH} = -200 μA	0.76 V	0.76 V	0.58			0.58				
	High-level		I _{OH} = -500 μA	0.85 V	0.85 V	0.65			0.65				
V_{OH}	output voltage	$V_{I} = V_{IH}$	I _{OH} = -3 mA	1.1 V	1.1 V	0.85			0.85			V	
	voltage		I _{OH} = -6 mA	1.4 V	1.4 V	1.05			1.05				
			I _{OH} = -8 mA	1.65 V	1.65 V	1.2			1.2				
			I _{OH} = -9 mA	2.3 V	2.3 V	1.75			1.75				
			I _{OH} = -12 mA	3 V	3 V	2.3			2.3				
			I _{OL} = 100 μA	0.7 V - 3.6 V	0.7 V - 3.6 V			0.1			0.1		
			I _{OL} = 50 μA	0.65 V	0.65 V			0.1			0.1		
	Low-level output voltage		I _{OL} = 200 μA	0.76 V	0.76 V			0.18			0.18		
			I _{OL} = 500 μA	0.85 V	0.85 V			0.2			0.2		
V_{OL}		$V_I = V_{IL}$	I _{OL} = 3 mA	1.1 V	1.1 V			0.25			0.25	V	
			I _{OL} = 6 mA	1.4 V	1.4 V			0.35			0.35		
			I _{OL} = 8 mA	1.65 V	1.65 V			0.45			0.45		
			I _{OL} = 9 mA	2.3 V	2.3 V			0.55			0.55		
			I _{OL} = 12 mA	3 V	3 V			0.7			0.7		
		$V_1 = 0.20$	V	0.65 V	0.65 V	4			4				
		$V_I = 0.23$	3 V	0.76 V	0.76 V	8			7				
	Bus-hold low	$V_1 = 0.26$	S V	0.85 V	0.85 V	10			10				
	sustaining	$V_1 = 0.39$	V	1.1 V	1.1 V	20			20				
I _{BHL}	current (Port A or Port B)	$V_1 = 0.49$) V	1.4 V	1.4 V	40			30			μA	
	(4)	$V_I = 0.58$	3 V	1.65 V	1.65 V	55			45				
		$V_{I} = 0.7$	V	2.3 V	2.3 V	90			80				
		$V_1 = 0.8$	V	3 V	3 V	145			135				
		$V_1 = 0.20$) V	0.65 V	0.65 V	-4			-4				
		$V_1 = 0.23$	3 V	0.76 V	0.76 V	-8			-7				
	Bus-hold	$V_1 = 0.26$	S V	0.85 V	0.85 V	-10			-10				
	high sustaining	$V_1 = 0.39$) V	1.1 V	1.1 V	-20			-20				
I _{BHH}	current (Port	$V_1 = 0.49$	V	1.4 V	1.4 V	-40			-30			μΑ	
	A or Port B)	$V_1 = 0.58$	3 V	1.65 V	1.65 V	-55			-45				
		$V_1 = 0.7$	V	2.3 V	2.3 V	-90			-80				
		$V_1 = 0.8$	V	3 V	3 V	-145			-135				

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \\ \hbox{(2)} & V_{CCO} \text{ is the } V_{CC} \text{ associated with the output port.} \\ \hbox{(3)} & \text{All typical data is taken at } 25^{\circ}\text{C.} \\ \end{array}$

The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to VCC and then lowering it to V_{IH} min.

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)}$

						0	perating	free-air	temper	ature (T _A)	
PA	RAMETER	TEST CONDITIONS		V _{CCA}	V _{CCB}	-40)°C to 85°	°C	-40°	°C to 125	°C	UNIT
						MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	
				0.75 V	0.75 V	40			40			
				0.84 V	0.84 V	50			50			
	Bus-hold low			0.95 V	0.95 V	65			65			
	overdrive	.,		1.3 V	1.3 V	105			105			
BHLO	current (Port A or Port B)	$V_I = 0$ to	V _{CC}	1.6 V	1.6 V	150			150			μA
	(6)			1.95 V	1.95 V	205			205			
				2.7 V	2.7 V	335			335			
				3.6 V	3.6 V	480			480			
				0.75 V	0.75 V	-40			-40			
				0.84 V	0.84 V	-50			-50			
	Bus-hold			0.95 V	0.95 V	-65			-65			
	high overdrive			1.3 V	1.3 V	-105			-105			
внно	current (Port A or Port B)	$V_I = 0$ to	VCC	1.6 V	1.6 V	-150			-150			μΑ
				1.95 V	1.95 V	-205			-205			
				2.7 V	2.7 V	-335			-335			
				3.6 V	3.6 V	-480			-480			
	Input leakage	Control inputs (xDIR, xOE): V _I = V _{CCA} or GND		0.65 V- 3.6 V	0.65 V- 3.6 V	-0.5		0.5	-1		1	μΑ
I	current	Data Inp	outs (xAx, xBx)	0.65 V- 3.6 V	0.65 V- 3.6 V	-4		4	-8		8	μA
	Partial power	1	V_1 or $V_0 = 0 V -$	0 V	0 V - 3.6 V	-8		8	-12		12	
off	down current	B Port: \ 3.6 V	V_{I} or $V_{O} = 0 V -$	0 V - 3.6 V	0 V	-8		8	-12		12	μA
oz	Tri-state output current (8)	A or B P $V_{I} = V_{CC}$ V_{CCO} or	ort or G <u>ND,</u> V _O = GND, OE = V _{IH}	3.6 V	3.6 V	-4		4	-8		8	μA
		V _I =		0.65 V- 3.6 V	0.65 V- 3.6 V			13			26	
CCA	V _{CCA} supply current	V _{CCI} or	I _O = 0	0 V	3.6 V	-2			-12			μΑ
	Current	GND		3.6 V	0 V			8			16	
		V _I =		0.65 V- 3.6 V	0.65 V- 3.6 V			13			26	
ССВ	V _{CCB} supply	V_{CCI} or	$I_O = 0$	0 V	3.6 V			8			16	μΑ
	current	GND		3.6 V	0 V	-2			-12			
CCA +	Combined supply current	V _I = V _{CCI} or GND	I _O = 0	0.65 V- 3.6 V	0.65 V- 3.6 V			20			40	μΑ
Ç _i	Control Input Capacitance	ut V = 3.3 V or CND		3.3 V	3.3 V		4.5			4.5		pF
C _{io}	Data I/O Capacitance	OE = V _C DC +1 M wave	_{CCA} , V _O = 1.65V MHz -16 dBm sine	3.3 V	3.3 V		7.4			7.4		pF

 ⁽⁶⁾ An external driver must source at least I_{BHLO} to switch this node from low to high.
 (7) An external driver must sink at least I_{BHHO} to switch this node from high to low.
 (8) For I/O ports, the parameter I_{OZ} includes the input leakage current.

6.6 Switching Characteristics, $V_{CCA} = 0.7 \pm 0.05 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										ı	B-Port S	Supply	Voltage	(V _{CCB})													
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0.05 V 0.8 ± 0.04 V		.04 V	0.9 ± 0.045 V		1.2 ± 0.1 V		1.5 ± 0.1 V		1.8 ± 0.15 V		2.5 ±).2 V	3.3 ± 0.3 V		UNIT							
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
		_	В	-40°C to 85°C	0.5	161	0.5	109	0.5	78	0.5	41	0.5	38	0.5	41	0.5	68	0.5	181							
	Propagation	А	Ь	-40°C to 125°C	0.5	161	0.5	109	0.5	78	0.5	41	0.5	38	0.5	41	0.5	68	0.5	181							
t _{pd}	delay	В	^	-40°C to 85°C	0.5	161	0.5	134	0.5	112	0.5	59	0.5	22	0.5	15	0.5	11	0.5	10	ns						
		Б	Α	-40°C to 125°C	0.5	161	0.5	134	0.5	112	0.5	59	0.5	22	0.5	16	0.5	11	0.5	10							
		ŌĒ	Α	-40°C to 85°C	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159							
	Disable time		A	-40°C to 125°C	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159	0.5	159							
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	158	0.5	122	0.5	102	0.5	55	0.5	54	0.5	56	0.5	65	0.5	125	ns						
		OE	Ь	-40°C to 125°C	0.5	158	0.5	122	0.5	102	0.5	55	0.5	54	0.5	56	0.5	65	0.5	125							
		ŌĒ	0	<u> </u>	Α	-40°C to 85°C	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243					
	Enable time	OE	A	-40°C to 125°C	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243	0.5	243							
t _{en}	Enable time	OE B	able time OE	-40°C to 85°C	0.5	292	0.5	192	0.5	134	0.5	87	0.5	73	0.5	69	0.5	70	0.5	148	ns						
				ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	D	-40°C to 125°C	0.5	292	0.5	192	0.5	134	0.5	88	0.5	74	0.5	69	0.5	70	0.5

Submit Documentation Feedback Copyright © 2019, Texas Instruments Incorporated

6.7 Switching Characteristics, $V_{CCA} = 0.8 \pm 0.04 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										I	B-Port S	Supply	Voltage	(V _{CCB})															
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0).04 V	0.9 ± 0.	.045 V	1.2 ± (0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± (V 8.0	UNIT								
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX									
		_	В	-40°C to 85°C	0.5	134	0.5	90	0.5	64	0.5	30	0.5	24	0.5	23	0.5	25	0.5	34									
	Propagation	A	Ь	-40°C to 125°C	0.5	134	0.5	90	0.5	64	0.5	30	0.5	24	0.5	23	0.5	25	0.5	34									
t _{pd}	delay	В	^	-40°C to 85°C	0.5	109	0.5	90	0.5	72	0.5	39	0.5	22	0.5	15	0.5	11	0.5	10	ns								
		Б	Α	-40°C to 125°C	0.5	109	0.5	90	0.5	72	0.5	39	0.5	22	0.5	15	0.5	11	0.5	10									
		ŌĒ	Α	-40°C to 85°C	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110									
	Disable time		A	-40°C to 125°C	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110	0.5	110									
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	147	0.5	111	0.5	91	0.5	42	0.5	36	0.5	35	0.5	37	0.5	47	ns								
		OE	Ь	-40°C to 125°C	0.5	147	0.5	111	0.5	91	0.5	42	0.5	36	0.5	35	0.5	37	0.5	47									
				or	ŌĒ		OF.	Α	-40°C to 85°C	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143				
	Enable time	OE	A	-40°C to 125°C	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143									
t _{en}	Enable time	OE B	ŌĒ E	-40°C to 85°C	0.5	253	0.5	164	0.5	117	0.5	71	0.5	57	0.5	52	0.5	47	0.5	53	ns								
				ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	D	-40°C to 125°C	0.5	253	0.5	164	0.5	117	0.5	73	0.5	58	0.5	53	0.5	48	0.5

Copyright © 2019, Texas Instruments Incorporated

6.8 Switching Characteristics, $V_{CCA} = 0.9 \pm 0.045 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

											B-Port S	Supply	Voltage	(V _{CCB})							
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0).04 V	0.9 ± 0.	.045 V	1.2 ± (0.1 V	1.5 ± (0.1 V	1.8 ± 0	.15 V	2.5 ±	0.2 V	3.3 ± (V 8.0	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		_	В	-40°C to 85°C	0.5	112	0.5	72	0.5	54	0.5	24	0.5	19	0.5	17	0.5	16	0.5	19	
	Propagation	А	Ь	-40°C to 125°C	0.5	112	0.5	72	0.5	54	0.5	24	0.5	19	0.5	17	0.5	16	0.5	19	no
t _{pd}	delay	В	^	-40°C to 85°C	0.5	78	0.5	64	0.5	54	0.5	27	0.5	19	0.5	14	0.5	10	0.5	10	ns
		Ь	Α	-40°C to 125°C	0.5	78	0.5	64	0.5	54	0.5	27	0.5	19	0.5	14	0.5	10	0.5	10	
		ŌĒ	^	-40°C to 85°C	0.5	81	0.5	81	0.5	81	0.5	81	0.5	81	0.5	81	0.5	81	0.5	81	
	Disable time	OE	Α	-40°C to 125°C	0.5	82	0.5	82	0.5	82	0.5	82	0.5	82	0.5	82	0.5	82	0.5	82	20
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	141	0.5	106	0.5	85	0.5	36	0.5	29	0.5	27	0.5	26	0.5	30	ns
		OE	D	-40°C to 125°C	0.5	141	0.5	106	0.5	85	0.5	37	0.5	30	0.5	28	0.5	26	0.5	30	
		ŌĒ	Α	-40°C to 85°C	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	
	Frankla tima	OE	A	-40°C to 125°C	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	0.5	84	
t _{en}	Enable time	ŌĒ	Б	-40°C to 85°C	0.5	229	0.5	149	0.5	107	0.5	63	0.5	48	0.5	43	0.5	37	0.5	38	ns
		OE .	В	-40°C to 125°C	0.5	229	0.5	149	0.5	107	0.5	65	0.5	50	0.5	45	0.5	39	0.5	39	

10 Submit Documentation Feedback Copyright © 2019, Texas Instruments Incorporated

6.9 Switching Characteristics, $V_{CCA} = 1.2 \pm 0.1 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										I	B-Port S	Supply	Voltage	(V _{CCB})							
F	PARAMETER	FROM	то	Test Conditions	0.7 ± 0	V 20.	0.8 ± 0	.04 V	0.9 ± 0	.045 V	1.2 ± (0.1 V	1.5 ± (0.1 V	1.8 ± 0	.15 V	2.5 ±	0.2 V	3.3 ±	V 8.0	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		^	В	-40°C to 85°C	0.5	60	0.5	39	0.5	27	0.5	15	0.5	11	0.5	10	0.5	8	0.5	9	
	Propagation	A	Ь	-40°C to 125°C	0.5	60	0.5	39	0.5	27	0.5	15	0.5	12	0.5	10	0.5	9	0.5	9	
t _{pd}	delay	В	^	-40°C to 85°C	0.5	41	0.5	30	0.5	24	0.5	15	0.5	11	0.5	9	0.5	7	0.5	7	ns
		Ь	Α	-40°C to 125°C	0.5	41	0.5	30	0.5	24	0.5	15	0.5	11	0.5	9	0.5	7	0.5	7	
		ŌĒ	Α	-40°C to 85°C	0.5	28	0.5	28	0.5	28	0.5	28	0.5	28	0.5	28	0.5	28	0.5	28	
	Disable time	OE	A	-40°C to 125°C	0.5	30	0.5	30	0.5	30	0.5	30	0.5	30	0.5	30	0.5	30	0.5	30	
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	133	0.5	100	0.5	79	0.5	29	0.5	22	0.5	20	0.5	17	0.5	17	ns
		OE	Ь	-40°C to 125°C	0.5	134	0.5	100	0.5	80	0.5	31	0.5	23	0.5	21	0.5	18	0.5	18	
		ŌĒ	Α	-40°C to 85°C	0.5	37	0.5	37	0.5	37	0.5	37	0.5	37	0.5	37	0.5	37	0.5	37	
	Enable time	OE	A	-40°C to 125°C	0.5	39	0.5	39	0.5	39	0.5	39	0.5	39	0.5	39	0.5	39	0.5	39	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	168	0.5	109	0.5	77	0.5	51	0.5	37	0.5	31	0.5	25	0.5	23	ns
		UE	D	-40°C to 125°C	0.5	168	0.5	109	0.5	78	0.5	53	0.5	39	0.5	34	0.5	27	0.5	24	

Copyright © 2019, Texas Instruments Incorporated

12

6.10 Switching Characteristics, $V_{CCA} = 1.5 \pm 0.1 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										I	B-Port S	Supply	Voltage	(V _{CCB})							
F	PARAMETER	FROM	то	Test Conditions	0.7 ± 0	V 20.0	0.8 ± 0	.04 V	0.9 ± 0	.045 V	1.2 ±	0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ±	0.2 V	3.3 ±	V 8.0	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		^	В	-40°C to 85°C	0.5	22	0.5	22	0.5	19	0.5	11	0.5	9	0.5	8	0.5	7	0.5	6	
	Propagation	A	Ь	-40°C to 125°C	0.5	22	0.5	22	0.5	19	0.5	11	0.5	9	0.5	8	0.5	7	0.5	6	
t _{pd}	delay	В	^	-40°C to 85°C	0.5	38	0.5	24	0.5	19	0.5	11	0.5	9	0.5	8	0.5	5	0.5	5	ns
		Ь	Α	-40°C to 125°C	0.5	38	0.5	24	0.5	19	0.5	11	0.5	9	0.5	8	0.5	6	0.5	5	
		ŌĒ	Α	-40°C to 85°C	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	
	Disable time	OE	A	-40°C to 125°C	0.5	21	0.5	21	0.5	21	0.5	21	0.5	21	0.5	21	0.5	21	0.5	21	
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	131	0.5	98	0.5	78	0.5	27	0.5	20	0.5	18	0.5	14	0.5	14	ns
		OE	Ь	-40°C to 125°C	0.5	132	0.5	98	0.5	78	0.5	29	0.5	21	0.5	19	0.5	15	0.5	15	
		ŌĒ	Α	-40°C to 85°C	0.5	23	0.5	23	0.5	23	0.5	23	0.5	23	0.5	23	0.5	23	0.5	23	
	Enable time	OE	A	-40°C to 125°C	0.5	25	0.5	25	0.5	25	0.5	25	0.5	25	0.5	25	0.5	25	0.5	25	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	109	0.5	84	0.5	67	0.5	43	0.5	31	0.5	26	0.5	20	0.5	18	ns
		UE	D	-40°C to 125°C	0.5	109	0.5	84	0.5	68	0.5	45	0.5	34	0.5	29	0.5	22	0.5	19	

Submit Documentation Feedback Copyright © 2019, Texas Instruments Incorporated

6.11 Switching Characteristics, $V_{CCA} = 1.8 \pm 0.15 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										ı	3-Port S	Supply	Voltage	(V _{CCB})							
P	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	.045 V	1.2 ±	0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ±	0.2 V	3.3 ±	0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		^	В	-40°C to 85°C	0.5	15	0.5	15	0.5	14	0.5	9	0.5	8	0.5	7	0.5	6	0.5	6	
	Propagation	A	Б	-40°C to 125°C	0.5	16	0.5	15	0.5	14	0.5	9	0.5	8	0.5	7	0.5	6	0.5	6	
t _{pd}	delay	В	^	-40°C to 85°C	0.5	41	0.5	23	0.5	17	0.5	10	0.5	8	0.5	7	0.5	5	0.5	4	ns
		В	A	-40°C to 125°C	0.5	41	0.5	23	0.5	17	0.5	10	0.5	8	0.5	7	0.5	5	0.5	4	
		ŌĒ		-40°C to 85°C	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	
	Disable time	OE .	A	-40°C to 125°C	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	129	0.5	98	0.5	77	0.5	27	0.5	19	0.5	17	0.5	13	0.5	13	ns
		OE .	В	-40°C to 125°C	0.5	131	0.5	98	0.5	77	0.5	28	0.5	21	0.5	18	0.5	14	0.5	14	
		ŌĒ		-40°C to 85°C	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	
	Fachle time	OE .	Α	-40°C to 125°C	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	102	0.5	73	0.5	60	0.5	38	0.5	28	0.5	24	0.5	19	0.5	16	ns
		OE	D	-40°C to 125°C	0.5	102	0.5	75	0.5	62	0.5	41	0.5	31	0.5	26	0.5	20	0.5	18	ı

Copyright © 2019, Texas Instruments Incorporated

14

6.12 Switching Characteristics, $V_{CCA} = 2.5 \pm 0.2 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

											B-Port S	Supply	Voltage	(V _{CCB})							
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± (0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ±	0.2 V	3.3 ±	0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		_	В	-40°C to 85°C	0.5	11	0.5	11	0.5	10	0.5	7	0.5	6	0.5	5	0.5	5	0.5	5	
	Propagation	A	Ь	-40°C to 125°C	0.5	11	0.5	11	0.5	10	0.5	7	0.5	6	0.5	5	0.5	5	0.5	5	
t _{pd}	delay	В	۸	-40°C to 85°C	0.5	68	0.5	25	0.5	17	0.5	8	0.5	7	0.5	6	0.5	5	0.5	4	ns
		Ь	Α	-40°C to 125°C	0.5	68	0.5	25	0.5	17	0.5	9	0.5	7	0.5	6	0.5	5	0.5	4	
		ŌĒ	Α	-40°C to 85°C	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	
	Disable time	OE	A	-40°C to 125°C	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	128	0.5	96	0.5	76	0.5	26	0.5	18	0.5	16	0.5	12	0.5	12	ns
		OE	Ь	-40°C to 125°C	0.5	129	0.5	96	0.5	77	0.5	27	0.5	20	0.5	17	0.5	13	0.5	13	
		ŌĒ	Α	-40°C to 85°C	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	
	Enable time	OE	A	-40°C to 125°C	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	120	0.5	69	0.5	54	0.5	33	0.5	24	0.5	20	0.5	16	0.5	14	ns
		OE	Ь	-40°C to 125°C	0.5	120	0.5	70	0.5	56	0.5	36	0.5	26	0.5	22	0.5	18	0.5	15	

Submit Documentation Feedback Copyright © 2019, Texas Instruments Incorporated

6.13 Switching Characteristics, $V_{CCA} = 3.3 \pm 0.3 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

										ı	3-Port S	Supply	Voltage	(V _{CCB})							
P	ARAMETER	FROM	то	Test Condtions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	.045 V	1.2 ±	0.1 V	1.5 ±	0.1 V	1.8 ± 0).15 V	2.5 ±	0.2 V	3.3 ±	0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		_	В	-40°C to 85°C	0.5	10	0.5	10	0.5	10	0.5	7	0.5	5	0.5	5	0.5	5	0.5	4	
	Propagation	А	Б	-40°C to 125°C	0.5	10	0.5	10	0.5	10	0.5	7	0.5	5	0.5	5	0.5	5	0.5	4	
t _{pd}	delay	В	^	-40°C to 85°C	0.5	182	0.5	34	0.5	19	0.5	9	0.5	6	0.5	5	0.5	5	0.5	4	ns
		Ь	A	-40°C to 125°C	0.5	182	0.5	34	0.5	19	0.5	9	0.5	6	0.5	6	0.5	5	0.5	4	
		ŌĒ		-40°C to 85°C	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	
	Disable time	OE	A	-40°C to 125°C	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	142	0.5	96	0.5	76	0.5	26	0.5	18	0.5	16	0.5	12	0.5	11	ns
		OE	В	-40°C to 125°C	0.5	142	0.5	97	0.5	77	0.5	27	0.5	19	0.5	17	0.5	13	0.5	12	
		ŌĒ		-40°C to 85°C	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	
	Fachle time	OE	Α	-40°C to 125°C	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	194	0.5	82	0.5	57	0.5	33	0.5	22	0.5	18	0.5	14	0.5	13	ns
		UE	В	-40°C to 125°C	0.5	194	0.5	82	0.5	58	0.5	35	0.5	24	0.5	20	0.5	16	0.5	14	ı

Submit Documentation Feedback

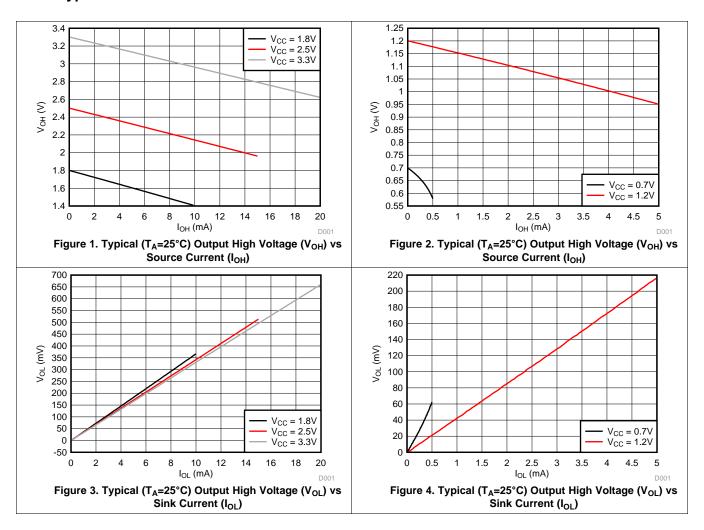
15

SCES878 – MARCH 2019 www.ti.com

TEXAS INSTRUMENTS

6.14 Operating Characteristics: T_A = 25°C

	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	UNIT
			0.7 V	0.7 V		2.2		
			0.8 V	0.8 V		2.3		
			0.9 V	0.9 V		2.3		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V		2.3		
	per transceiver (A to B: outputs enabled)	MHz, $tr = tf = 1$ ns	1.5 V	1.5 V		2.2		pF
	,		1.8 V	1.8 V		2.2		
			2.5 V	2.5 V		2.5		
			3.3 V	3.3 V		2.6		
			0.7 V	0.7 V		1.5		
			0.8 V	0.8 V		1.7		
			0.9 V	0.9 V		1.7		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V		1.7		
	per transceiver (A to B: outputs disabled)	MHz, $tr = tf = 1 \text{ ns}$	1.5 V	1.5 V		1.5		pF
	,		1.8 V	1.8 V		1.5		
			2.5 V	2.5 V		1.8		
			3.3 V	3.3 V		2.1		
pdA			0.7 V	0.7 V		12.6		
			0.8 V	0.8 V		12.4		
			0.9 V	0.9 V		12.4		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V		12.8		
	per transceiver (B to A: outputs enabled)	MHz, $tr = tf = 1$ ns	1.5 V	1.5 V		13.3		pF
	,		1.8 V	1.8 V		14.6		
			2.5 V	2.5 V		18.0		
			3.3 V	3.3 V		21.1		
			0.7 V	0.7 V		1.1		
			0.8 V	0.8 V		1.1		
			0.9 V	0.9 V		1.0		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V		1.0		
	per transceiver (B to A: outputs disabled)	MHz, $tr = tf = 1 \text{ ns}$	1.5 V	1.5 V		1.0		pF
	,		1.8 V	1.8 V		0.9		
			2.5 V	2.5 V		0.9		
			3.3 V	3.3 V		0.9		

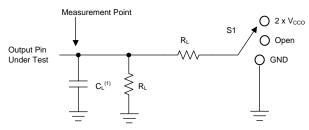


Operating Characteristics: $T_A = 25^{\circ}C$ (continued)

	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP	MAX	UNIT
			0.7 V	0.7 V	12.6		
			0.8 V	0.8 V	12.4		
			0.9 V	0.9 V	12.4		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	12.8		.
	per transceiver (A to B: outputs enabled)	MHz, $tr = tf = 1$ ns	1.5 V	1.5 V	13.3		pF
	,		1.8 V	1.8 V	14.6		
			2.5 V	2.5 V	17.8		
			3.3 V	3.3 V	21.0		
			0.7 V	0.7 V	1.1		
			0.8 V	0.8 V	1.1		
			0.9 V	0.9 V	1.0		
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	1.0		F
	per transceiver (A to B: outputs disabled)	MHz, $tr = tf = 1 \text{ ns}$	1.5 V	1.5 V	1.0		pF
	,		1.8 V	1.8 V	0.9		
			2.5 V	2.5 V	0.9		
0			3.3 V	3.3 V	0.9		
C _{pdB}			0.7 V	0.7 V	2.2		
			0.8 V	0.8 V	2.2		
			0.9 V	0.9 V	2.2		
	Power Dissipation Capacitance per transceiver (B to A: outputs	CL = 0, RL = Open f = 1	1.2 V	1.2 V	2.0		~F
	enabled)	MHz, $tr = tf = 1$ ns	1.5 V	1.5 V	2.0		pF
	,		1.8 V	1.8 V	1.9		
			2.5 V	2.5 V	2.0		
			3.3 V	3.3 V	2.6		
			0.7 V	0.7 V	1.6		
			0.8 V	0.8 V	1.5		
			0.9 V	0.9 V	1.6		
	Power Dissipation Capacitance per transceiver (B to A: outputs	CL = 0, RL = Open f = 1	1.2 V	1.2 V	1.4		pF
	disabled)	MHz, $tr = tf = 1$ ns	1.5 V	1.5 V	1.3		рг
	,		1.8 V	1.8 V	1.2		
			2.5 V	2.5 V	1.4		
			3.3 V	3.3 V	1.9		

TEXAS INSTRUMENTS

6.15 Typical Characteristics

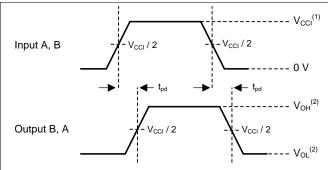


7 Parameter Measurement Information

7.1 Load Circuit and Voltage Waveforms

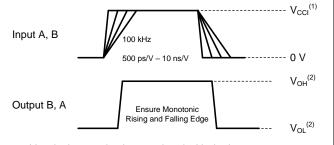
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- f = 1 MHz
- $Z_O = 50 \Omega$
- dv/dt ≤ 1 ns/V



(1) C_L includes probe and jig capacitance.

Figure 5. Load Circuit


Table 1. Load Circuit Conditions

	Parameter	V _{cco}	R_L	CL	S ₁	V _{TP}
$\Delta t/\Delta v$	Input transition rise or fall rate	0.65 V – 3.6 V	1 ΜΩ	15 pF	Open	N/A
		1.1 V – 3.6 V	2 kΩ	15 pF	Open	N/A
t _{pd}	Propagation (delay) time	0.65 V - 0.95 V	20 kΩ	15 pF	Open	N/A
		3 V – 3.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	2 × V _{CCO}	0.15 V
$t_{\text{en}},t_{\text{dis}}$	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.1 V
		0.65 V - 0.95 V	20 kΩ	15 pF	2 × V _{CCO}	0.1 V
		3 V – 3.6 V	2 kΩ	15 pF	GND	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	GND	0.15 V
$t_{\rm en},t_{\rm dis}$	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	GND	0.1 V
		0.65 V - 0.95 V	20 kΩ	15 pF	GND	0.1 V

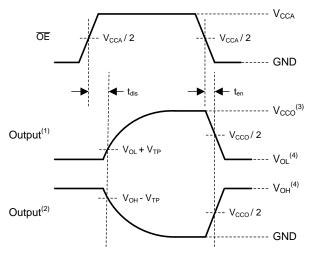

- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1

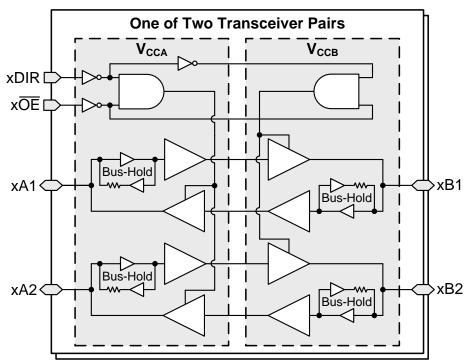
Figure 6. Propagation Delay

- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified $R_L,\,C_L,$ and S_1

Figure 7. Input Transition Rise or Fall Rate

- (1) Output waveform on the condition that input is driven to a valid Logic Low.
- (2) Output waveform on the condition that input is driven to a valid Logic High.
- (3) V_{CCO} is the supply pin associated with the output port.
- (4) V_{OH} and V_{OL} are typical output voltage levels with specified R_L , C_L , and S_1 .

Figure 8. Enable Time and Disable Time



8 Detailed Description

8.1 Overview

The SN74AXCH4T245 is a 4-bit, dual-supply noninverting bidirectional voltage level translation device with bushold inputs. xAx pins and control pins (1DIR, 2DIR, 1 \overline{OE} , and 2 \overline{OE}) are reference to V_{CCA} logic levels, and xBx pins are referenced to V_{CCB} logic levels. The A port is able to accept I/O voltages ranging from 0.65 V to 3.6 V, while the B port can accept I/O voltages from 0.65 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when \overline{OE} is set to low. When \overline{OE} is set to high, both xAx and xBx pins are in the high-impedance state. See *Device Functional Modes* for a summary of the operation of the control logic.

8.2 Functional Block Diagram

Note: Bus-hold circuits are only present for data inputs, not control inputs

8.3 Feature Description

8.3.1 Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using Ohm's law $(R = V \div I)$.

Signals applied to the inputs need to have fast edge rates, as defined by $\Delta t/\Delta v$ in *Recommended Operating Conditions* to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.

8.3.2 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

SCES878 - MARCH 2019 www.ti.com

ISTRUMENTS

Feature Description (continued)

8.3.3 Partial Power Down (I_{off})

The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting current backflow into the device. The maximum leakage into or out of any input or output pin on the device is specified by Ioff in the Electrical Characteristics.

8.3.4 V_{CC} Isolation

The inputs and outputs for this device enter a high-impedance state when either supply is <100mV.

8.3.5 Over-voltage Tolerant Inputs

Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in the Recommended Operating Conditions.

8.3.6 Glitch-free Power Supply Sequencing

Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where the output erroneously transitions to VCC when it should be held low). Glitches of this nature can be misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a false device configuration of the peripheral, or even a false data initialization by the peripheral. For more information regarding the power up glitch performance of the AXC family of level translators, see the Glitch Free Power Sequencing With AXC Level Translators application report

8.3.7 Negative Clamping Diodes

The inputs and outputs to this device have negative clamping diodes as depicted in Figure 9.

CAUTION

Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

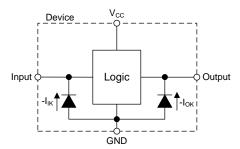


Figure 9. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.8 Fully Configurable Dual-Rail Design

Both the V_{CCA} and V_{CCB} pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).

8.3.9 Supports High-Speed Translation

The SN74AXCH4T245 device can support high data-rate applications. The translated signal data rate can be up to 380 Mbps when the signal is translated from 1.8 V to 3.3 V.

Feature Description (continued)

8.3.10 Bus-Hold Data Inputs

Each data input on this device includes a weak latch that maintains a valid logic level on the input. The state of these latches is unknown at startup and remains unknown until the input has been forced to a valid high or low state. After data has been sent through a channel, the latch then maintains the previous state on the input if the line is left floating. It is not recommended to use pull-up or pull-down resistors together with a bus-hold input, as it may cause undefined inputs to occur which leads to excessive current consumption.

Bus-hold data inputs prevent floating inputs on this device. The *Implications of Slow or Floating CMOS Inputs* application report explains the problems associated with leaving CMOS inputs floating.

These latches remain active at all times, independent of all control signals such as direction control or output enable.

The Bus-Hold Circuit application report has additional details regarding bus-hold inputs.

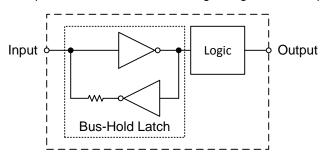


Figure 10. Simplified Schematic For Device With Bus-Hold Data Inputs

8.4 Device Functional Modes

Table 2. Function Table (Each 2-Bit Section)⁽¹⁾⁽²⁾

CONTROL	L INPUTS	Port S	tatus	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Output (Enabled)	Input (Hi-Z)	B data to A bus
L	Н	Input (Hi-Z)	Output (Enabled)	A data to B bus
Н	X	Input (Hi-Z)	Input (Hi-Z)	Isolation

- (1) Input circuits of the data I/Os are always active.
- (2) Bus-hold circuits of the data I/Os are always active, independent of the state of the control inputs.

SCES878 - MARCH 2019 www.ti.com

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AXCH4T245 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SN74AXCH4T245 device is ideal for use in applications where a push-pull driver is connected to the data I/Os. The max data rate can be up to 380 Mbps when device translates a signal from 1.8 V to 3.3 V.

One example application is shown in Figure 11, where the SN74AXCH4T245 device is used to translate a low voltage UART signal from an SoC to a higher voltage signal which properly drive the inputs of the bluetooth module, and vice versa.

9.2 Typical Application

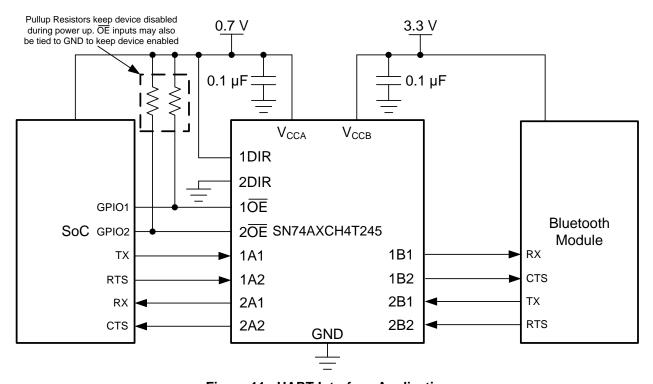


Figure 11. UART Interface Application

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 3.

Table 3. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage range	0.65 V to 3.6 V
Output voltage range	0.65 V to 3.6 V

SCES878 - MARCH 2019 www.ti.com

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AXCH4T245 device to determine the input voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input port. For a valid logic low the value must be less than the low-level input voltage (V_{II}) of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AXCH4T245 device is driving to determine the output voltage range.

9.2.3 Application Curve

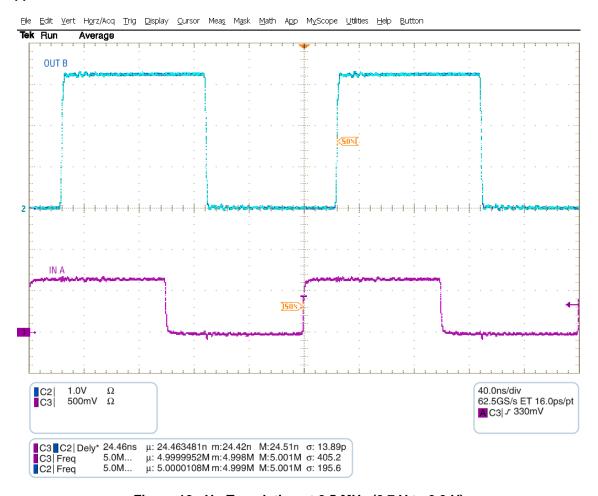


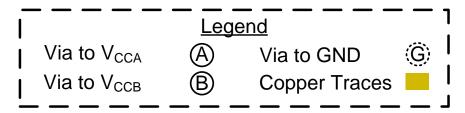
Figure 12. Up Translation at 2.5 MHz (0.7 V to 3.3 V)

SCES878 – MARCH 2019 www.ti.com

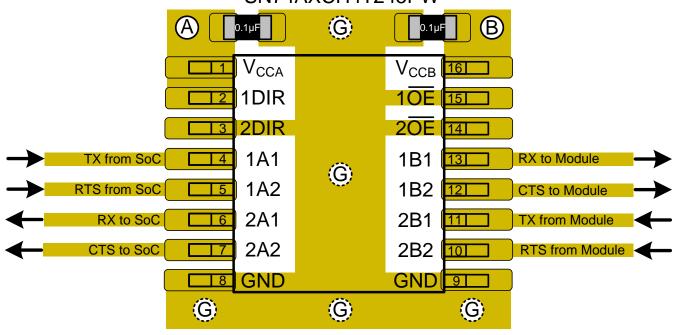
10 Power Supply Recommendations

Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing without any supply sequencing requirements such as ramp order or ramp rate.

This device was designed with various power supply sequencing methods in mind to help prevent unintended triggering of downstream devices. For more information regarding the power up glitch performance of the AXC family of level translators, see the *Glitch Free Power Sequencing With AXC Level Translators* application report


11 Layout

11.1 Layout Guidelines


To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:

- Use bypass capacitors on the power supply pins and place them as close to the device as possible.
- Use short trace lengths to avoid excessive loading.
- Do not use pullup or pulldown resistors on data inputs for devices with bus-hold circuits.

11.2 Layout Example

SN74AXCH4T245PW

www.ti.com SCES878 - N

12 Device and Documentation Support

12.1 Related Documentation

For related documentation see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application report

Texas Instruments, Power Sequencing for AXC Family of Devices application report

Texas Instruments, System Considerations for Using Bus-hold Circuits to Avoid Floating Inputs application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AXCH4T245PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	S4TH245	Samples
SN74AXCH4T245RSVR	ACTIVE	UQFN	RSV	16	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1U7R	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

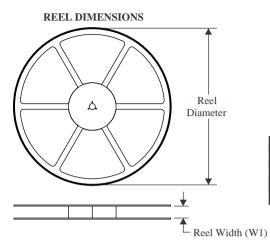
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

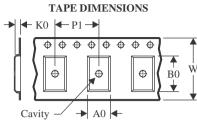
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




10-Dec-2020

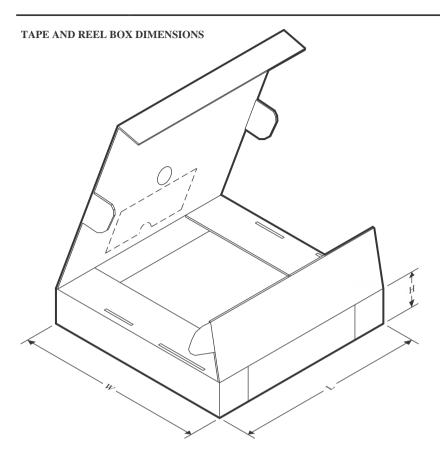
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

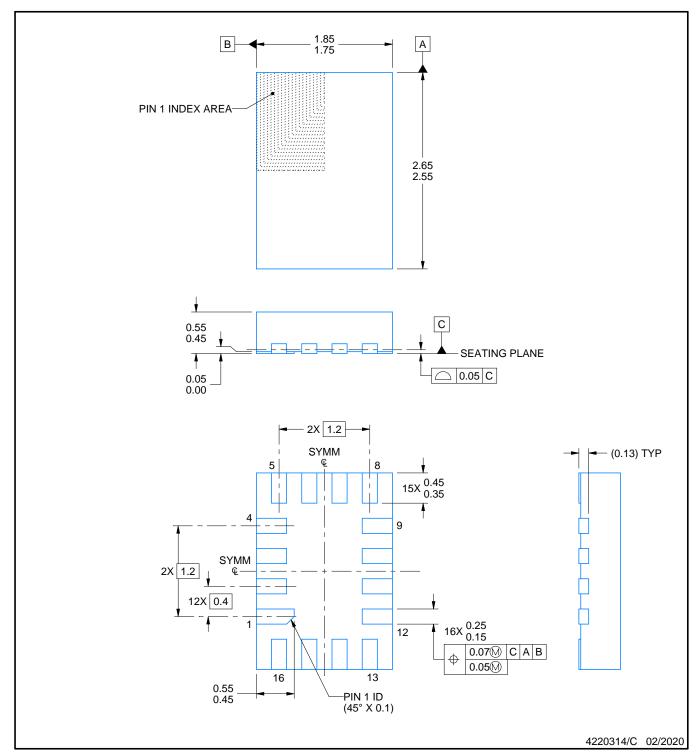


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AXCH4T245PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AXCH4T245RSVR	UQFN	RSV	16	3000	178.0	13.5	2.1	2.9	0.75	4.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

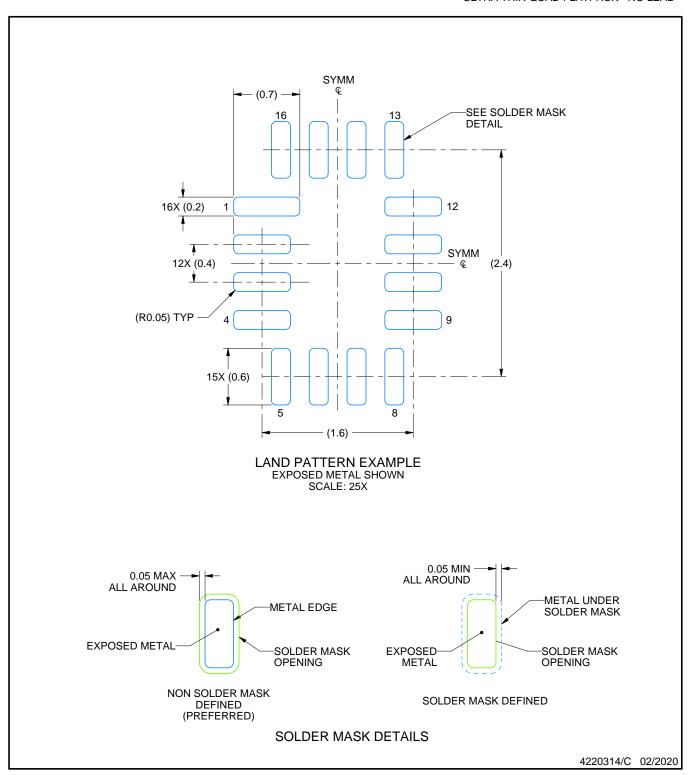
www.ti.com 3-Jun-2022



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AXCH4T245PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74AXCH4T245RSVR	UQFN	RSV	16	3000	189.0	185.0	36.0

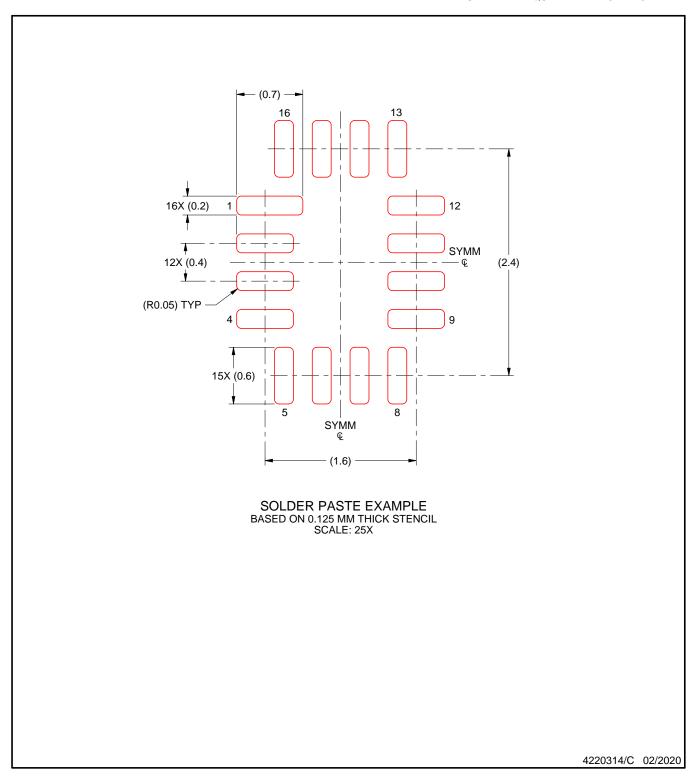
ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

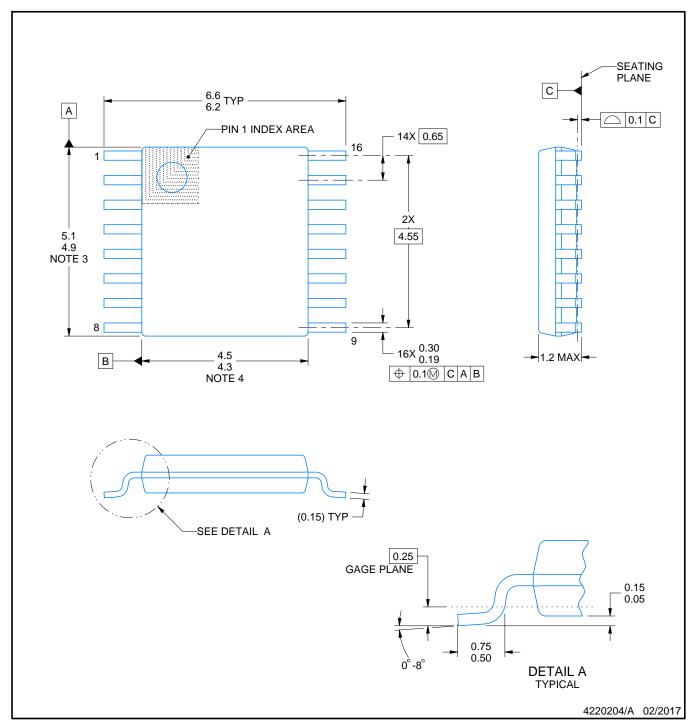
ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

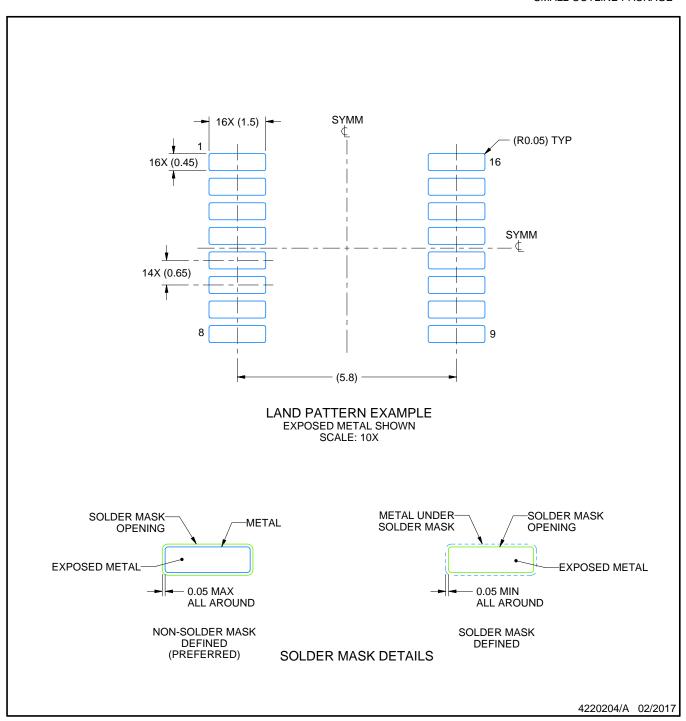
ULTRA THIN QUAD FLATPACK - NO LEAD


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

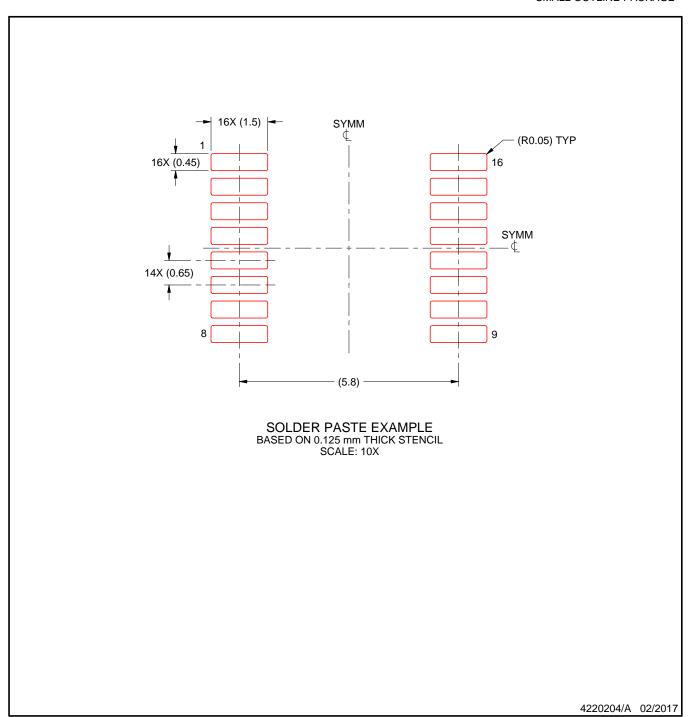
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated