NCV8851B Automotive Grade Synchronous Buck Controller Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV8851B Evaluation Board provides a convenient way to evaluate and integrate a complete high-efficiency synchronous buck converter design. No additional components are required, other than dc supplies for the input voltage and enable pin. The board also can be connected to an external clock source to synchronize the switching frequency or for spread spectrum operation. The board is configured for a 5.0 V output with a 170 kHz switching frequency and a 4 A current limit, intended for applications requiring over 3 A of current.

Additionally, modifying the NCV8851B Evaluation Board for different output voltage, switching frequency or current limit is straightforward, requiring minimal component changes.

Key Features

- 5.0 V Output Voltage
- 91% Efficiency at 3 A
- 4 A Average Current Limit (ACL)
- 170 kHz Switching Frequency
- Average Current Mode Control
- Automotive Grade for up to $T_A = 105^{\circ}C$
- Wide Input Voltage Range of 4.5 V to 40 V
- Regulates through Load Dump Conditions
- 1.0 µA Maximum Quiescent Current in Sleep Mode
- Programmable Fixed Frequency 170 kHz to 500 kHz
- External Clock Synchronization up to 600 kHz
- Easy to Modify for Other Applications

Figure 1. NCV8851B Evaluation Board

Table 1. EVALUATION BOARD TERMINAL DESCRIPTIONS

Terminal	Function				
V _{IN}	Positive dc input voltage.				
GND	Common dc return.				
V _{OUT}	Regulated dc output voltage.				
SYNC	Input for external clock synchronization.				
EN	Enable input. When disabled, the part enters sleep mode.				

Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)

Rating	Value	Unit
Dc Supply Voltage (VIN, EN) Peak Transient Voltage (Load Dump)	–0.3 to 40 45	V
Dc Supply Voltage (SYNC)	–0.3 to 7	V
Junction Temperature (NCV8851B)	-40 to 150	°C
Ambient Temperature (Demo board)	-40 to 105	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS (T_A = 25°C, 4.5 V \leq V_IN \leq 40 V, I_{OUT} \leq 4 A, unless otherwise specified)

Characteristic	Conditions	Typical Value	Unit				
OUTPUT VOLTAGE							
Output Voltage	-	5.00	V				
Voltage Accuracy	-	4	%				
Line Regulation	I _{OUT} = 0 A	0.02	%				
Load Regulation	V _{IN} = 13.2 V	0.04	%				
SWITCHING REGULATOR							
Switching Frequency	V _{IN} = 13.2 V, I _{OUT} = 0 A	170	kHz				
Soft-start Time	V _{IN} = 13.2 V, I _{OUT} = 100 mA, 10-90%	14	ms				
SYNC Frequency	-	170 to 600	kHz				
Duty Cycle Range	-	5 to 95	%				
CURRENT LIMIT							
Average Current Limit	-	4	А				
Cycle-by-cycle Overcurrent Protection	-	6.4	А				
GENERAL							
Input Undervoltage Lockout (UVLO)	V _{IN} increasing	4.3	V				
Efficiency	$V_{IN} = 13.2 \text{ V}, I_{OUT} = 100 \text{ mA} \\ V_{IN} = 13.2 \text{ V}, I_{OUT} = 1 \text{ A} \\ V_{IN} = 13.2 \text{ V}, I_{OUT} = 4 \text{ A}$	70.7 93.2 90.9	%				
Maximum Shutdown Current	-	1.0	μΑ				
Thermal Shutdown	-	180	°C				

Figure 2. NCV8851B Application Diagram

Operational Guidelines

- 1. Connect a dc input voltage, 4.5 V \leq V_{BATT} \leq 40 V, between "V_{IN}" and "GND".
- 2. Connect a load impedance between " V_{OUT} " and "GND".
- 3. Connect a dc enable voltage, $4.5 \text{ V} \le \text{EN} \le \text{V}_{\text{BATT}} \le 20 \text{ V}$, between "EN" and "GND". If EN must be tied to a higher voltage, a current limiting resistor is required (see below).
- 4. Optionally, for external clock synchronization, connect a pulse source, SYNC, between "SYNC" and "GND". The positive amplitude should be $1.0 \text{ V} \leq \text{SYNC} \leq 7.0 \text{ V}$ and negative amplitude should be $-0.3 \text{ V} \leq \text{GND} \leq 0.8 \text{ V}$. SYNC pulse duty cycle may range from 10% to 90%, and frequency may range from the programmed frequency (170 kHz by default) to 600 kHz.

Figure 3. Evaluation Board Connections

TYPICAL WAVEFORMS

Figure 4. Startup at 170 kHz, 13.2 V to 5 V Output

Figure 6. Minimum Duty Cycle at 170 kHz, 5 V Output

Figure 8. SWN, V_{OUT} at 170 kHz, 28 V to 5 V Output

Figure 5. SWN, V_{OUT} at 170 kHz, 13.2 V to 5 V Output

Figure 7. Maximum Duty Cycle at 170 kHz, 5 V Output

Figure 9. SYNC from 170 to 600 kHz, 13.2 V to 5 V Output

TYPICAL PERFORMANCE

Figure 10. 100 mA to 3.6 A Load Step, 170 kHz, 5 V Output

Figure 12. Efficiency at 170 kHz, 13.2 V to 5 V Output

Figure 13. Line Regulation at 170 kHz, 13.2 V to 5 V Output

SCHEMATIC

Figure 14. NCV8851B Evaluation Board Schematic

Table 4. BILL OF MATERIALS

Qty	Ref	Part	Part Description	Part Description Manufacturer		
3	CSW1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU	
	CB1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU	
	C1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU	
2	CC1	820pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics North America	GRM188R71H821KA01D	
	CV2	820pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics North America	GRM188R71H821KA01D	
1	CC2	100pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics GCM1885C1H101JA1 North America		
2	CI1	470μF	470μF 63V FK electrolytic SMD capacitor	Panasonic - ECG	EEVFK1J471M	
	CI2	470μF	470μF 63V FK electrolytic SMD capacitor	Panasonic - ECG	EEVFK1J471M	
1	CO1	330μF	330μF 10V 20% polymer electrolytic SMD capacitor	Sanyo Electronic Components Co.	10TPE330M	
1	CV1	2200pF	2200pF 10% 0603 X7R ceramic SMD capacitor	Panasonic - ECG	ECJ-1VB1H222K	
1	C2	1μF	1µF 50V 10% 1206 X7R ceramic SMD capacitor	Murata Electronics North America	GCM31MR71H105KA55L	
2	C3	1μF	1µF 16V 10% 0603 X7R ceramic SMD capacitor	1μF 16V 10% 0603 X7R ceramic SMD Taiyo Yuden capacitor		
	C6	1μF	1µF 16V 10% 0603 X7R ceramic SMD capacitor	Taiyo Yuden	EMK107BJ105KA-TR	
2	DSW1	MBRA160T3	1A, 60 V Schottky SMD rectifier ON Semiconductor		MBRA160T3G	
	DB1	MBRA160T3	1A, 60 V Schottky SMD rectifier	ON Semiconductor	MBRA160T3G	
1	JO1	SMB	Vertical PCB mount gold RF connector jack Power Connectivity Solutions		131-3701-261	
1	L1	15μH	15µH SMD power inductor	Wurth	7447709150	
2	Q1	Q1 NTD5407 40V, 38A N-channel power MOSFET ON Semiconductor		ON Semiconductor	NTD5407NG	
	Q2	NTD5407	NTD5407 40V, 38A N-channel power MOSFET ON Semiconductor		NTD5407NG	
1	RC1	60.4k	60.4kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0760K4L	
1	RC2	4.02k	4.02kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-074K02L	
1	RF0	10.7k	10.7kΩ 1% 0.1W 0603 Thick-film SMD resistor	0.1W 0603 Thick-film SMD Yageo Corporation RC0603FR-0		
1	RF1	56.2k	56.2kΩ 1% 0.1W 0603 Thick-film SMD Yageo Corporation R0		RC0603FR-0756K2L	
1	RN1	OPEN	1% 0.1W 0603 Thick-film SMD resistor			
1	RO1	51.1k	51.1kΩ 1% 0.1W 0603 Thick-film SMD resistor	IW 0603 Thick-film SMD Yageo Corporation RC0603FR-075 resistor		
2	RSN1	100	100Ω 1% 0.25W 1206 Thick-film SMD resistor	Yageo Corporation	RC1206FR-07100RL	
	RSN2	100	100Ω 1% 0.25W 1206 Thick-film SMD resistor	Yageo Corporation	RC1206FR-07100RL	

Qty	Ref	Part	Part Description	Manufacturer	Part Number	
1	RS1	25m	$25m\Omega$ 1% 2512 Thick-film SMD current sense resistor	Vishay/Dale	WSL2512R0250FEA	
1	RV1	13.7k	13.7kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0713K7L	
1	R6	4.7	4.75Ω 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-074R75L	
4	TP1	VCC	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0	
	TP7	VOUT	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0	
	TP12	PGND	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0	
	TP13	PGND	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0	
4	TP8	AGND	0.042" Inboard pin	Vector Electronics	K24C	
	TP9	AGND	0.042" Inboard pin Vector Electronics		K24C	
	TP10	EN	0.042" Inboard pin Vector Electronics		K24C	
	TP11	SYNC	0.042" Inboard pin Vector Electronics		K24C	
1	U1	NCV8851B	Automotive synchronous buck controller ON Semiconductor NCV88			

Table 4. BILL OF MATERIALS

EVALUATION BOARD MODIFICATIONS

Connecting EN to a Higher Voltage or VBATT

Typically, EN is tied to a logic output or low-voltage supply. However, EN can be tied to a higher voltage or to V_{BATT} . In either case, if the supply that EN is tied to is expected to go above 20 V, a current limiting resistor is required.

For convenience, RN1 is unpopulated, disconnecting EN from V_{BATT} (via V_{IN}) by default. To connect EN to V_{BATT} , populate RN1 with a current limiting resistor. To connect EN to a separate higher voltage supply from V_{BATT} , place a current limiting resistor in series with the supply. Consult the data sheet, NCV8851B/D, for selecting a current limiting resistor.

Programming the Switching Frequency to a Different Value

The switching frequency is programmed with a resistor, RO1, from the R_{OSC} pin to GND. By default, the switching frequency is set to 170 kHz with a 51.1 k Ω resistor used for RO1. The frequency can be programmed to a different value by replacing RO1. Consult the data sheet, NCV8851B/D, for selecting a different frequency program resistor. Changing the switching frequency may impact dynamic characteristics. Typically, increasing the switching frequency allows the dynamic response to improve by further optimization of the compensators; however, it is advised to analyze dynamic response results of simulation whenever the switching frequency is modified.

Synchronizing to a Higher Frequency

When connecting the SYNC input to a significantly higher frequency than that set by the program resistor, dynamic performance could be impaired. Based on empirical results, it is advised to analyze dynamic response results of simulation whenever SYNC is more than 33% higher than the programmed switching frequency.

Adjusting the Current Limit

The current limit can be adjusted by using a different sense resistor for RS1. Consult the data sheet, NCV8851B/D, for selecting a different current limit.

Changing the sense resistor may impact dynamic characteristics. It is advised to analyze dynamic response results of simulation whenever the sense resistor is modified.

Table 5. BOM VARIATIONS

The following list of BOM variations on output voltage and switching frequency have been tested.

	3.3 V, 4 A			5 V, 4 A		8 V, 4 A				
Part	170kHz	360 kHz	500 kHz	170kHz	360 kHz	500 kHz	170 kHz	360 kHz	500 kHz	Unit
RO1	51.1	23.2	16.2	51.1	23.2	16.2	51.1	23.2	16.2	kΩ
L1	15	10	10	15	15	10	22	15	15	μH
CO1	330	330	330	330	330	330	330	330	330	μF
RS1	25	25	25	25	25	25	25	25	25	mΩ
RC1	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	kΩ
RC2	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	kΩ
CC1	820	820	820	820	820	820	820	820	820	pF
CC2	100	100	100	100	100	100	100	100	100	pF
RV1	13.7	27.4	27.4	13.7	27.4	27.4	13.7	13.7	13.7	kΩ
RF0	17.4	17.4	8.66	10.7	5.36	3.57	10.0	4.99	3.32	kΩ
RF1	54.9	54.9	27.4	56.2	28	18.7	90.9	45.3	30.1	kΩ
CV1	2200	2200	2200	2200	2200	2200	2200	2200	2200	pF
CV2	820	820	820	820	820	820	820	820	820	pF

Selection of components for different operational configurations than those listed above is beyond the scope of this document and the data sheet, NCV8851B/D, should

be consulted. Additionally, it is advised to analyze dynamic response results of simulation whenever variant components are used.

LAYOUT PLOTS

Figure 15. Top Silk Screen

Figure 16. Top Copper

Figure 17. Bottom Copper

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered "AS IS" and without warranty of any kind including, but not limited to, that the board is production-worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any For more information and documentation, please visit www.onsemi.com

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support:

ON Semiconductor Website: www.onsemi.com

Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative