
Applicability

This document applies to the part numbers of STM32F412xE and STM32F412xG devices and the device variants as stated in
this page.
It gives a summary and a description of the device errata, with respect to the device datasheet and reference manual RM0402.
Deviation of the real device behavior from the intended device behavior is considered to be a device limitation. Deviation of the
description in the reference manual or the datasheet from the intended device behavior is considered to be a documentation
erratum. The term “errata” applies both to limitations and documentation errata.

Table 1. Device summary

Reference Part numbers

STM32F412xx STM32F412CE, STM32F412CG, STM32F412GDIE, STM32F412RE, STM32F412RG, STM32F412VE,
STM32F412VG, STM32F412ZE, STM32F412ZG

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1) REV_ID(2)

STM32F412xx

Z 0x1001

B 0x2000

1
0x3000

C

1. Refer to the device datasheet for how to identify this code on different types of package.
2. REV_ID[15:0] bitfield of DBGMCU_IDCODE register.

STM32F412xE and STM32F412xG device errata

STM32F412xE and STM32F412xG

Errata sheet

ES0305 - Rev 11 - February 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

1 Summary of device errata

The following table gives a quick reference to the STM32F412xE and STM32F412xG device limitations and their
status:
A = limitation present, workaround available
N = limitation present, no workaround available
P = limitation present, partial workaround available
“-” = limitation absent
Applicability of a workaround may depend on specific conditions of target application. Adoption of a workaround
may cause restrictions to target application. Workaround for a limitation is deemed partial if it only reduces the
rate of occurrence and/or consequences of the limitation, or if it is fully effective for only a subset of instances on
the device or in only a subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation
Status

Rev.
Z

Rev.
B

Rev.
1

Rev.
C

Core

2.1.1 Interrupted loads to SP can cause erroneous behavior A A A A

2.1.2 VDIV or VSQRT instructions might not complete correctly when
very short ISRs are used A A A A

2.1.3 Store immediate overlapping exception return operation might
vector to incorrect interrupt A A A A

System

2.2.1 Flash sector erase issue for sectors 5 to 11 A - - -

2.2.2 Debugging Stop mode and SysTick timer A A A A

2.2.3 Debugging Stop mode with WFE entry A A A A

2.2.4 Debugging Sleep/Stop mode with WFE/WFI entry A A A A

2.2.5 Wake-up sequence from Standby mode when using more than
one wake-up source A A A A

2.2.6 Full JTAG configuration without NJTRST pin cannot be used A A A A

2.2.7 MPU attribute to RTC and IWDG registers incorrectly managed A A A A

2.2.8 Delay after an RCC peripheral clock enabling A A A A

2.2.9 Internal noise impacting the ADC accuracy A A A A

2.2.10 Possible delay in backup domain protection disabling/enabling
after programming the DBP bit A A A A

2.2.11 PC13 signal transitions disturb LSE A A A A

2.2.12 In some specific cases, DMA2 data corruption occurs when
managing AHB and APB2 peripherals in a concurrent way A A A A

FSMC

2.3.1 Dummy read cycles inserted when reading synchronous
memories N N N N

2.3.2 Wrong data read from a busy NAND memory A A A A

2.3.3 Spurious clock stoppage with continuous clock feature enabled A A A A

2.3.4 Data read might be corrupted when the write FIFO is disabled A A A A

QUADSPI

2.4.1 First nibble of data not written after dummy phase A A A A

2.4.2 Wrong data from memory-mapped read after an indirect mode
operation A A A A

2.4.3 Memory-mapped read operations may fail when timeout counter
is enabled P P P P

STM32F412xE and STM32F412xG
Summary of device errata

ES0305 - Rev 11 page 2/34

Function Section Limitation
Status

Rev.
Z

Rev.
B

Rev.
1

Rev.
C

QUADSPI 2.4.4 Memory-mapped access in indirect mode clearing QUADSPI_AR
register P P P P

ADC 2.5.1 ADC sequencer modification during conversion A A A A

DAC
2.6.1 DMA request not automatically cleared by clearing DMAEN A A A A

2.6.2 DMA underrun flag not set when an internal trigger is detected on
the clock cycle of the DMA request acknowledge N N N N

TIM

2.7.1 PWM re-enabled in automatic output enable mode despite of
system break P P P P

2.7.3 Consecutive compare event missed in specific conditions N N N N

2.7.4 Output compare clear not working with external counter reset P P P P

IWDG

2.8.1 RVU flag not reset in Stop A A A A

2.8.2 PVU flag not reset in Stop A A A A

2.8.3 RVU flag not cleared at low APB clock frequency A A A A

2.8.4 PVU flag not cleared at low APB clock frequency A A A A

RTC

2.9.1 RTC calendar registers are not locked properly A A A A

2.9.2 RTC interrupt can be masked by another RTC interrupt A A A A

2.9.3 Calendar initialization may fail in case of consecutive INIT mode
entry A A A A

2.9.4 Alarm flag may be repeatedly set when the core is stopped in
debug N N N N

I2C

2.10.1 SMBus standard not fully supported A A A A

2.10.2 Start cannot be generated after a misplaced Stop A A A A

2.10.3 Mismatch on the “Setup time for a repeated Start condition”
timing parameter A A A A

2.10.4 Data valid time (tVD;DAT) violated without the OVR flag being set A A A A

2.10.5
Both SDA and SCL maximum rise times (tr) violated when the
VDD_I2C bus voltage is higher than ((VDD + 0.3) / 0.7) V A A A A

2.10.6 Spurious bus error detection in Master mode A A A A

2.10.7 Wrong data sampling when data set-up time (tSU;DAT) is smaller
than one FMPI2CCLK period A A A A

USART

2.11.1 Idle frame is not detected if the receiver clock speed is deviated N N N N

2.11.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register A A A A

2.11.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection N N N N

2.11.4 Break frame is transmitted regardless of CTS input line status N N N N

2.11.5 RTS signal abnormally driven low after a protocol violation A A A A

2.11.6 Start bit detected too soon when sampling for NACK signal from
the smartcard N N N N

2.11.7 Break request can prevent the transmission complete flag (TC)
from being set A A A A

2.11.8 Guard time not respected when data are sent on TXE events A A A A

2.11.9 RTS is active while RE or UE = 0 A A A A

SPI/I2S 2.12.1 BSY bit may stay high when SPI is disabled A A A A

STM32F412xE and STM32F412xG
Summary of device errata

ES0305 - Rev 11 page 3/34

Function Section Limitation
Status

Rev.
Z

Rev.
B

Rev.
1

Rev.
C

SPI/I2S

2.12.2 Anticipated communication upon SPI transit from slave receiver
to master A A A A

2.12.3 I2S slave in PCM short pulse mode sensitive to timing between
WS and CK

P P P P

2.12.4 Corrupted last bit of data and/or CRC received in Master mode
with delayed SCK feedback A A A A

2.12.5 Wrong CRC calculation when the polynomial is even A A A A

2.12.6 Wrong CRC transmitted in Master mode with delayed SCK
feedback A A A A

2.12.7 BSY flag may stay high at the end of a data transfer in Slave
mode A A A A

SDIO
2.13.1 No underrun detection with wrong data transmission A A A A

2.13.2 Wrong CCRCFAIL status after a response without CRC is
received A A A A

bxCAN 2.14.1 bxCAN time-triggered communication mode not supported N N N N

OTG_FS
2.15.1 Transmit data FIFO is corrupted when a write sequence to the

FIFO is interrupted with accesses to certain OTG_FS registers A A A A

2.15.2 Host packet transmission may hang when connecting through a
hub to a low-speed device N N N N

The following table gives a quick reference to the documentation errata.

Table 4. Summary of device documentation errata

Function Section Documentation erratum

TIM 2.7.2 TRGO and TRGO2 trigger output failure

STM32F412xE and STM32F412xG
Summary of device errata

ES0305 - Rev 11 page 4/34

2 Description of device errata

The following sections describe the errata of the applicable devices with Arm® core and provide workarounds if
available. They are grouped by device functions.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2.1 Core
Reference manual and errata notice for the Arm® Cortex®-M4F core revision r0p1 is available from http://
infocenter.arm.com.

2.1.1 Interrupted loads to SP can cause erroneous behavior
This limitation is registered under Arm ID number 752770 and classified into “Category B”. Its impact to the device
is minor.

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/R13), erroneous
behavior can occur. In all cases, returning from the interrupt will result in the load instruction being executed an
additional time. For all instructions performing an update to the base register, the base register will be erroneously
updated on each execution, resulting in the stack-pointer being loaded from an incorrect memory location.
The affected instructions that can result in the load transaction being repeated are:
• LDR SP, [Rn],#imm
• LDR SP, [Rn,#imm]!
• LDR SP, [Rn,#imm]
• LDR SP, [Rn]
• LDR SP, [Rn,Rm]
The affected instructions that can result in the stack-pointer being loaded from an incorrect memory address are:
• LDR SP,[Rn],#imm
• LDR SP,[Rn,#imm]!
As compilers do not generate these particular instructions, the limitation is only likely to occur with hand-written
assembly code.

Workaround

Both issues may be worked around by replacing the direct load to the stack-pointer, with an intermediate load to a
general-purpose register followed by a move to the stack-pointer.

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
This limitation is registered under Arm ID number 776924 and classified into “Category B”. Its impact to the device
is limited.

Description

The VDIV and VSQRT instructions take 14 cycles to execute. When an interrupt is taken a VDIV or VSQRT
instruction is not terminated, and completes its execution while the interrupt stacking occurs. If lazy context save
of floating point state is enabled then the automatic stacking of the floating point context does not occur until a
floating point instruction is executed inside the interrupt service routine.
Lazy context save is enabled by default. When it is enabled, the minimum time for the first instruction in the
interrupt service routine to start executing is 12 cycles. In certain timing conditions, and if there is only one or two
instructions inside the interrupt service routine, then the VDIV or VSQRT instruction might not write its result to the
register bank or to the FPSCR.

STM32F412xE and STM32F412xG
Description of device errata

ES0305 - Rev 11 page 5/34

http://infocenter.arm.com
http://infocenter.arm.com

The failure occurs when the following condition is met:
1. The floating point unit is enabled
2. Lazy context saving is not disabled
3. A VDIV or VSQRT is executed
4. The destination register for the VDIV or VSQRT is one of s0 - s15
5. An interrupt occurs and is taken
6. The interrupt service routine being executed does not contain a floating point instruction
7. Within 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed
A minimum of 12 of these 14 cycles are utilized for the context state stacking, which leaves 2 cycles for
instructions inside the interrupt service routine, or 2 wait states applied to the entire stacking sequence (which
means that it is not a constant wait state for every access).
In general, this means that if the memory system inserts wait states for stack transactions (that is, external
memory is used for stack data), then this erratum cannot be observed.
The effect of this erratum is that the VDIV or VQSRT instruction does not complete correctly and the register bank
and FPSCR are not updated, which means that these registers hold incorrect, out of date, data.

Workaround

A workaround is only required if the floating point unit is enabled. A workaround is not required if the stack is in
external memory.
There are two possible workarounds:
• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the FPCCR at address

0xE000EF34).
• Ensure that every interrupt service routine contains more than 2 instructions in addition to the exception

return instruction.

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt
This limitation is registered under Arm ID number 838869 and classified into “Category B (rare)”. Its impact to the
device is minor.

Description

The core includes a write buffer that permits execution to continue while a store is waiting on the bus. Under
specific timing conditions, during an exception return while this buffer is still in use by a store instruction, a late
change in selection of the next interrupt to be taken might result in there being a mismatch between the interrupt
acknowledged by the interrupt controller and the vector fetched by the processor.
The failure occurs when the following condition is met:
1. The handler for interrupt A is being executed.
2. Interrupt B, of the same or lower priority than interrupt A, is pending.
3. A store with immediate offset instruction is executed to a bufferable location.

– STR/STRH/STRB <Rt>, [<Rn>,#imm]
– STR/STRH/STRB <Rt>, [<Rn>,#imm]!
– STR/STRH/STRB <Rt>, [<Rn>],#imm

4. Any number of additional data-processing instructions can be executed.
5. A BX instruction is executed that causes an exception return.
6. The store data has wait states applied to it such that the data is accepted at least two cycles after the BX is

executed.
– Minimally, this is two cycles if the store and the BX instruction have no additional instructions

between them.
– The number of wait states required to observe this erratum needs to be increased by the number of

cycles between the store and the interrupt service routine exit instruction.
7. Before the bus accepts the buffered store data, another interrupt C is asserted which has the same or

lower priority as A, but a greater priority than B.

STM32F412xE and STM32F412xG
Core

ES0305 - Rev 11 page 6/34

Example:
The processor should execute interrupt handler C, and on completion of handler C should execute the handler
for B. If the conditions above are met, then this erratum results in the processor erroneously clearing the pending
state of interrupt C, and then executing the handler for B twice. The first time the handler for B is executed it
will be at interrupt C's priority level. If interrupt C is pended by a level-based interrupt which is cleared by C's
handler then interrupt C will be pended again once the handler for B has completed and the handler for C will be
executed.
As the STM32 interrupt C is level based, it eventually becomes pending again and is subsequently handled.

Workaround

For software not using the memory protection unit, this erratum can be worked around by setting DISDEFWBUF
in the Auxiliary Control Register.
In all other cases, the erratum can be avoided by ensuring a DSB occurs between the store and the BX
instruction. For exception handlers written in C, this can be achieved by inserting the appropriate set of intrinsics
or inline assembly just before the end of the interrupt function, for example:
ARMCC:
...
__schedule_barrier();
__asm{DSB};
__schedule_barrier();
}

GCC:
...
__asm volatile ("dsb 0xf":::"memory");
}

2.2 System

2.2.1 Flash sector erase issue for sectors 5 to 11

Description

Under specific conditions, flash erase issues are observed.
The involved sectors are: 5 to 11.

Workaround

Do not perform sector erase on sectors 5 to 11.
Use flash mass erase to erase sectors 5 to 11.

2.2.2 Debugging Stop mode and SysTick timer

Description

If the SysTick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set in the DBGMCU_CR
register), it wakes up the system from Stop mode.

Workaround

To debug the Stop mode, disable the SysTick timer interrupt.

STM32F412xE and STM32F412xG
System

ES0305 - Rev 11 page 7/34

2.2.3 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register), the software
debugging is allowed during Stop mode. However, if the application software uses the WFE instruction to enter
Stop mode, after wake-up, some instructions may be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated function with one instruction
(NOP) between the execution of the WFE and the Bx LR. For example:
__asm void _WFE(void)
WFE
NOP
BX lr }

2.2.4 Debugging Sleep/Stop mode with WFE/WFI entry

Description

When the Sleep debug or Stop debug mode is enabled (DBG_SLEEP bit or DBG_STOP bit are set in the
DBGMCU_CR register), software debugging is allowed during Sleep or Stop mode. After wake-up, some
unreachable instructions can be executed if the following conditions are met:
• The application software disables the Prefetch queue,
• the number of wait states configured for the flash memory interface is higher than zero, and
• the linker places the WFE or WFI instruction on a 4-byte aligned addresses (0x080xx xxx4).

Workaround

Apply one of the following measures:
• Add three NOPs after WFI/WFE instruction.
• Keep one AHB master active during Sleep (example keep DMA1 or DMA2 RCC clock enable bit set).
• Execute WFI/WFE instruction from routines inside the SRAM.

2.2.5 Wake-up sequence from Standby mode when using more than one wake-up source

Description

The various wake-up sources are logically OR-ed in front of the rising-edge detector that generates the wake-up
flag (WUF). The WUF needs to be cleared before Standby mode entry, otherwise the MCU wakes up immediately.
If one of the configured wake-up sources is kept high during the clearing of the WUF (by setting the CWUF bit), it
may mask further wake-up events on the input of the edge detector. As a consequence, the MCU may not be able
to wake up from Standby mode.

Workaround

To avoid this problem, apply the following sequence before entering Standby mode:
1. Disable all used wake-up sources.
2. Clear all related wake-up flags.
3. Reenable all used wake-up sources.
4. Enter Standby mode.

Note: Be aware that, when applying this workaround, if one of the wake-up sources is still kept high, the MCU enters
Standby mode but then it wakes up immediately and generates a power reset.

STM32F412xE and STM32F412xG
System

ES0305 - Rev 11 page 8/34

2.2.6 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if the NJTRST pin
(PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.2.7 MPU attribute to RTC and IWDG registers incorrectly managed

Description

If the MPU is used and the nonbufferable attribute is set to the RTC or IWDG memory map region, the
CPU access to the RTC or IWDG registers may be treated as bufferable, provided there is no APB prescaler
configured (AHB/APB prescaler is equal to 1).

Workaround

If the nonbufferable attribute is required for these registers, perform by software a read after the write to guaranty
the completion of the write access.

2.2.8 Delay after an RCC peripheral clock enabling

Description

A delay may be observed between an RCC peripheral clock enable and the effective peripheral enabling. It must
be taken into account in order to manage the peripheral read/write from/to registers.
This delay depends on the peripheral mapping:
• If the peripheral is mapped on the AHB: the delay may be equal to two AHB cycles.
• If the peripheral is mapped on the APB: the delay may be equal to 1 + (AHB/APB prescaler) cycles.

Workaround

Apply one of the following measures:

• Use the DSB instruction to stall the Arm® Cortex®-M4 CPU pipeline until the instruction has completed.
• Insert “n” NOPs between the RCC enable bit write and the peripheral register writes (n = 2 for AHB

peripherals, n = 1 + AHB/APB prescaler for APB peripherals).
• Simply insert a dummy read operation from the corresponding register just after enabling the peripheral

clock.

2.2.9 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC accuracy. This noise
is always present whatever the power mode of the MCU (Run or Sleep).

Workaround

Use the following sequence to adapt the accuracy level to the application requirements:
1. Configure the flash memory ART with prefetch OFF and data + instruction cache ON.
2. Use averaging and filtering algorithms on ADC output codes.
For more detailed workarounds, refer to the application note "How to improve ADC accuracy when using
STM32F2xx and STM32F4xx microcontrollers" (AN4073).

STM32F412xE and STM32F412xG
System

ES0305 - Rev 11 page 9/34

2.2.10 Possible delay in backup domain protection disabling/enabling after programming the DBP bit

Description

Depending on the AHB/APB1 prescaler, a delay between DBP bit programming and the effective disabling/
enabling of the backup domain protection can be observed and must be taken into account.
The higher the APB1 prescaler value, the higher the delay.

Workaround

Apply one of the following measures:
• Insert a dummy read operation to the PWR_CR register just after programming the DBP bit.
• Wait for the end of the operation (reset through the BDRST bit or write to the backup domain) via a polling

loop on targeted registers.

2.2.11 PC13 signal transitions disturb LSE

Description

The PC13 input/output toggling disturbs the LSE clock. As a result, PC13 may not be usable when LSE is used.

Workaround

Use an external clock with the LSE in bypass mode.

2.2.12 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2
peripherals in a concurrent way

Description

When the DMA2 is managing concurrent requests of AHB and APB2 peripherals, the transfer on the AHB can be
performed several times. Impacted peripheral are:
• QUADSPI: indirect mode read and write transfers
• FSMC: read and write operation with external device having FIFO
• GPIO: DMA2 transfers to GPIO registers (in memory-to-peripheral transfer mode). The transfers from the

GPIOs register are not impacted.
The data corruption is due to multiple DMA2 accesses over the AHB peripheral port impacting peripherals
embedding a FIFO.
For transfer to the internal SRAM through the DMA2 AHB peripheral port, the accesses can be performed several
times but without data corruptions in cases of concurrent requests.

Workaround

• Use the DMA2 AHB memory port when reading/writing from/to QUADSPI and FSMC instead of DMA2 AHB
default peripheral port.

• Use the DMA2 AHB memory port when writing to GPIOs instead of DMA2 AHB default peripheral port.
For more details about DMA controller features, refer to the section Take benefits of DMA2 controller and
system architecture flexibility of the application note "Using the STM32F2, STM32F4 and STM32F7 Series DMA
controller" (AN4031).

2.3 FSMC

2.3.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access from a synchronous memory, two dummy read accesses are performed at
the end of the burst cycle whatever the type of burst access.
The extra data values read are not used by the FSMC and there is no functional failure.

STM32F412xE and STM32F412xG
FSMC

ES0305 - Rev 11 page 10/34

Workaround

None.

2.3.2 Wrong data read from a busy NAND memory

Description

When a read command is issued to the NAND memory, the R/B signal gets activated upon the de-assertion of
the chip select. If a read transaction is pending, the NAND controller might not detect the R/B signal (connected
to NWAIT) previously asserted and sample a wrong data. This problem occurs only when the MEMSET timing is
configured to 0x00 or when ATTHOLD timing is configured to 0x00 or 0x01.

Workaround

Either configure MEMSET timing to a value greater than 0x00 or ATTHOLD timing to a value greater than 0x01.

2.3.3 Spurious clock stoppage with continuous clock feature enabled

Description

With the continuous clock feature enabled, the FSMC_CLK clock may spuriously stop when:
• the FSMC_CLK clock is divided by 2, and
• an FSMC bank set as 32-bit is accessed with a byte access.
division ratio set to 2, the FSMC_CLK clock may spuriously stop upon an

Note: With static memories, a spuriously stopped clock can be restarted by issuing a synchronous transaction or any
asynchronous transaction different from a byte access on 32-bit data bus width.

Workaround

With the continuous clock feature enabled, do not set the FSMC_CLK clock division ratio to 2 when accessing
32-bit asynchronous memories with byte access.

2.3.4 Data read might be corrupted when the write FIFO is disabled

Description

When the write FIFO is disabled, the FIFO empty event is generated for every write access. During a write
access, if a new read access occurs, the FMC grants the read access and waits till the FIFO gets empty. If
another read access occurs in a very short window (one cycle of the FIFO empty event), the returned data are
corrupted. This issue occurs only when the write FIFO is disabled (the WFDIS bit of the FSMC_BCR1 register is
set).

Workaround

Enable the write FIFO.

2.4 QUADSPI

2.4.1 First nibble of data not written after dummy phase

Description

The first nibble of data to be written to the external flash memory is lost when the following condition is met:
• QUADSPI is used in indirect write mode.
• At least one dummy cycle is used.

STM32F412xE and STM32F412xG
QUADSPI

ES0305 - Rev 11 page 11/34

Workaround

Use alternate bytes instead of dummy phase to add latency between the address phase and the data phase. This
works only if the number of dummy cycles to substitute corresponds to a multiple of eight bits of data.
Example:
• To substitute one dummy cycle, send one alternate byte (only possible in DDR mode with four data lines).
• To substitute two dummy cycles, send one alternate byte in SDR mode with four data lines.
• To substitute four dummy cycles, send two alternate bytes in SDR mode with four data lines, or one

alternate byte in SDR mode with two data lines.
• To substitute eight dummy cycles, send one alternate byte in SDR mode with one data line.

2.4.2 Wrong data from memory-mapped read after an indirect mode operation

Description

The first memory-mapped read in indirect mode can yield wrong data if the QUADSPI peripheral enters memory-
mapped mode with bits ADDRESS[1:0] of the QUADSPI_AR register both set.

Workaround

Before entering memory-mapped mode, apply the following measure, depending on access mode:
• Indirect read mode: clear the QUADSPI_AR register then issue an abort request to stop reading and to

clear the BUSY bit.
• Indirect write mode: clear the QUADSPI_AR register.

Caution: The QUADSPI_DR register must not be written after clearing the QUADSPI_AR register.

2.4.3 Memory-mapped read operations may fail when timeout counter is enabled

Description

In memory-mapped mode with the timeout counter enabled (by setting the TCEN bit of the QUADSPI_CR
register), the QUADSPI peripheral may hang and memory-mapped read operation fail. This occurs if the timeout
flag TOF is set at the same clock edge as a new memory-mapped read request.

Workaround

Disable the timeout counter. To raise the chip select, perform an abort at the end of each memory-mapped read
operation.

2.4.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register

Description

Memory-mapped accesses to the QUADSPI peripheral operating in indirect mode unduly clear the QUADSPI_AR
register to 0x00.

Workaround

Adopt one of the following measures:
• Avoid memory-mapped accesses to the QUADSPI peripheral operating in indirect mode.
• After each memory-mapped access to the QUADSPI operating in indirect mode, write the QUADSPI_AR

register with a desired value

STM32F412xE and STM32F412xG
QUADSPI

ES0305 - Rev 11 page 12/34

2.5 ADC

2.5.1 ADC sequencer modification during conversion

Description

When a software start-of-conversion is used as an ADC trigger, and if the ADC_SQRx or ADC_JSQRx register
is modified during the conversion, the current conversion is reset and the ADC does not automatically restart the
new conversion sequence. The hardware start-of-conversion trigger is not impacted and the ADC automatically
restarts the new sequence when the next hardware trigger occurs.

Workaround

When a software start-of-conversion is used, apply the following sequence:
1. First set the SWSART bit in the ADC_CR2 register.
2. Then restart the new conversion sequence.

2.6 DAC

2.6.1 DMA request not automatically cleared by clearing DMAEN

Description

Upon an attempt to stop a DMA-to-DAC transfer, the DMA request is not automatically cleared by clearing the
DAC channel bit of the DAC_CR register (DMAEN) or by disabling the DAC clock.
If the application stops the DAC operation while the DMA request is pending, the request remains pending while
the DAC is reinitialized and restarted, with the risk that a spurious DMA request is serviced as soon as the DAC is
enabled again.

Workaround

Apply the following sequence to stop the current DMA-to-DAC transfer and restart the DAC:
1. Check if DMAUDR bit is set in DAC_CR.
2. Clear the DAC channel DMAEN bit.
3. Disable the DAC clock.
4. Reconfigure the DAC, DMA and the triggers.
5. Restart the application.

2.6.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the DMA
request acknowledge

Description

When the DAC channel operates in DMA mode (DMAEN of DAC_CR register set), the DMA channel underrun
flag (DMAUDR of DAC_SR register) fails to rise upon an internal trigger detection if that detection occurs during
the same clock cycle as a DMA request acknowledge. As a result, the user application is not informed that an
underrun error occurred.
This issue occurs when software and hardware triggers are used concurrently to trigger DMA transfers.

Workaround

None.

STM32F412xE and STM32F412xG
ADC

ES0305 - Rev 11 page 13/34

2.7 TIM

2.7.1 PWM re-enabled in automatic output enable mode despite of system break

Description

In automatic output enable mode (AOE bit set in TIMx_BDTR register), the break input can be used to do a
cycle-by-cycle PWM control for a current mode regulation. A break signal (typically a comparator with a current
threshold) disables the PWM output(s) and the PWM is re-armed on the next counter period.
However, a system break (typically coming from the CSS Clock security System) is supposed to stop definitively
the PWM to avoid abnormal operation (for example with PWM frequency deviation).
In the current implementation, the timer system break input is not latched. As a consequence, a system break
indeed disables the PWM output(s) when it occurs, but PWM output(s) is (are) re-armed on the following counter
period.

Workaround

Preferably, implement control loops with the output clear enable function (OCxCE bit in the TIMx_CCMR1/CCMR2
register), leaving the use of break circuitry solely for internal and/or external fault protection (AOE bit reset).

2.7.2 TRGO and TRGO2 trigger output failure

Description

Some reference manual revisions may omit the following information.
The timers can be linked using ITRx inputs and TRGOx outputs. Additionally, the TRGOx outputs can be used as
triggers for other peripherals (for example ADC). Since this circuitry is based on pulse generation, care must be
taken when initializing master and slave peripherals or when using different master/slave clock frequencies:
• If the master timer generates a trigger output pulse on TRGOx prior to have the destination peripheral clock

enabled, the triggering system may fail.
• If the frequency of the destination peripheral is modified on-the-fly (clock prescaler modification), the

triggering system may fail.
As a conclusion, the clock of the slave timer or slave peripheral must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are being received from the master timer.
This is a documentation issue rather than a product limitation.

Workaround

No application workaround is required or applicable as long as the application handles the clock as indicated.

2.7.3 Consecutive compare event missed in specific conditions

Description

Every match of the counter (CNT) value with the compare register (CCR) value is expected to trigger a compare
event. However, if such matches occur in two consecutive counter clock cycles (as consequence of the CCR
value change between the two cycles), the second compare event is missed for the following CCR value
changes:
• in edge-aligned mode, from ARR to 0:

– first compare event: CNT = CCR = ARR
– second (missed) compare event: CNT = CCR = 0

• in center-aligned mode while up-counting, from ARR-1 to ARR (possibly a new ARR value if the period is
also changed) at the crest (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = (ARR-1)
– second (missed) compare event: CNT = CCR = ARR

• in center-aligned mode while down-counting, from 1 to 0 at the valley (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = 1
– second (missed) compare event: CNT = CCR = 0

STM32F412xE and STM32F412xG
TIM

ES0305 - Rev 11 page 14/34

This typically corresponds to an abrupt change of compare value aiming at creating a timer clock single-cycle-
wide pulse in toggle mode.
As a consequence:
• In toggle mode, the output only toggles once per counter period (squared waveform), whereas it is

expected to toggle twice within two consecutive counter cycles (and so exhibit a short pulse per counter
period).

• In center mode, the compare interrupt flag does note rise and the interrupt is not generated.

Note: The timer output operates as expected in modes other than the toggle mode.

Workaround

None.

2.7.4 Output compare clear not working with external counter reset

Description

The output compare clear event (ocref_clr) is not correctly generated when the timer is configured in the following
slave modes: Reset mode, Combined reset + trigger mode, and Combined gated + reset mode.
The PWM output remains inactive during one extra PWM cycle if the following sequence occurs:
1. The output is cleared by the ocref_clr event.
2. The timer reset occurs before the programmed compare event.

Workaround

Apply one of the following measures:
• Use BKIN (or BKIN2 if available) input for clearing the output, selecting the Automatic output enable mode

(AOE = 1).
• Mask the timer reset during the PWM ON time to prevent it from occurring before the compare event (for

example with a spare timer compare channel open-drain output connected with the reset signal, pulling the
timer reset line down).

2.8 IWDG

2.8.1 RVU flag not reset in Stop

Description

Successful write to the IWDG_RLR register raises the RVU flag and prevents further write accesses to the
register until the RVU flag is automatically cleared by hardware. However, if the device enters Stop mode while
the RVU flag is set, the hardware never clears that flag, and writing to the IWDG_RLR register is no longer
possible.

Workaround

Ensure that the RVU flag is cleared before entering Stop mode.

2.8.2 PVU flag not reset in Stop

Description

Successful write to the IWDG_PR register raises the PVU flag and prevents further write accesses to the register
until the PVU flag is automatically cleared by hardware. However, if the device enters Stop mode while the PVU
flag is set, the hardware never clears that flag, and writing to the IWDG_PR register is no longer possible.

Workaround

Ensure that the PVU flag is cleared before entering Stop mode.

STM32F412xE and STM32F412xG
IWDG

ES0305 - Rev 11 page 15/34

2.8.3 RVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_RLR register raises the RVU flag and prevents further write accesses to the
register until the RVU flag is automatically cleared by hardware. However, at APB clock frequency lower than
twice the IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_RLR register is no
longer possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

2.8.4 PVU flag not cleared at low APB clock frequency

Description

Successful write to the IWDG_PR register raises the PVU flag and prevents further write accesses to the register
until the PVU flag is automatically cleared by hardware. However, at APB clock frequency lower than twice the
IWDG clock frequency, the hardware never clears that flag, and writing to the IWDG_PR register is no longer
possible.

Workaround

Set the APB clock frequency higher than twice the IWDG clock frequency.

2.9 RTC

2.9.1 RTC calendar registers are not locked properly

Description

When reading the calendar registers with BYPSHAD = 0, the RTC_TR and RTC_DR registers may not be locked
after reading the RTC_SSR register. This happens if the read operation is initiated one APB clock period before
the shadow registers are updated. This can result in a non-consistency of the three registers. Similarly, the
RTC_DR register can be updated after reading the RTC_TR register instead of being locked.

Workaround

Apply one of the following measures:
• Use BYPSHAD = 1 mode (bypass shadow registers), or
• If BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still the same, otherwise

read the values again.

2.9.2 RTC interrupt can be masked by another RTC interrupt

Description

One RTC interrupt request can mask another RTC interrupt request if they share the same EXTI configurable line.
For example, interrupt requests from Alarm A and Alarm B or those from tamper and timestamp events are OR-ed
to the same EXTI line (refer to the EXTI line connections table in the Extended interrupt and event controller
(EXTI) section of the reference manual).
The following code example and figure illustrate the failure mechanism: The Alarm A event is lost (fails to
generate interrupt) as it occurs in the failure window, that is, after checking the Alarm A event flag but before the
effective clear of the EXTI interrupt flag by hardware. The effective clear of the EXTI interrupt flag is delayed with
respect to the software instruction to clear it.

STM32F412xE and STM32F412xG
RTC

ES0305 - Rev 11 page 16/34

Alarm interrupt service routine:
void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI line flag for RTC alarms*/
 If(ALRAF) /* Check if Alarm A triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the Alarm A interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process Alarm A event */
 }
 If(ALRBF) /* Check if Alarm B triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the Alarm B interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process Alarm B event */
 }
}

Figure 1. Masked RTC interrupt

D
T4

74
77

V1

Alarm B Flag

Alarm A Flag

EXTI Flag

ISR execution
CLEAR_
ALARM_
EXTI();

If
(ALRA
F)

If (ALRBF)
{
CLEAR_FLAG(ALRBF);
PROCESS_AlarmBEvent();
}

Failure window:
Alarm A Flag is being set after the software checks
its value
Alarm A Flag does not raise EXTI flag because this
one is not yet hardware cleared.

Alarm A is never processed
because no interrupt is generated
through EXTI

Workaround

In the interrupt service routine, apply three consecutive event flag ckecks - source one, source two, and source
one again, as in the following code example:
void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI's line Flag for RTC Alarm */
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
 If(ALRBF) /* Check if AlarmB triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the AlarmB interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process AlarmB Event */
 }
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
}

STM32F412xE and STM32F412xG
RTC

ES0305 - Rev 11 page 17/34

2.9.3 Calendar initialization may fail in case of consecutive INIT mode entry

Description

If the INIT bit of the RTC_ISR register is set between one and two RTCCLK cycles after being cleared, the
INITF flag is set immediately instead of waiting for synchronization delay (which should be between one and two
RTCCLK cycles), and the initialization of registers may fail.
Depending on the INIT bit clearing and setting instants versus the RTCCLK edges, it can happen that, after
being immediately set, the INITF flag is cleared during one RTCCLK period then set again. As writes to calendar
registers are ignored when INITF is low, a write during this critical period might result in the corruption of one or
more calendar registers.

Workaround

After existing the initialization mode, clear the BYPSHAD bit (if set) then wait for RSF to rise, before entering the
initialization mode again.

Note: It is recommended to write all registers in a single initialization session to avoid accumulating synchronization
delays.

2.9.4 Alarm flag may be repeatedly set when the core is stopped in debug

Description

When the core is stopped in debug mode, the clock is supplied to subsecond RTC alarm downcounter even when
the device is configured to stop the RTC in debug.
As a consequence, when the subsecond counter is used for alarm condition (the MASKSS[3:0] bitfield of the
RTC_ALRMASSR and/or RTC_ALRMBSSR register set to a non-zero value) and the alarm condition is met just
before entering a breakpoint or printf, the ALRAF and/or ALRBF flag of the RTC_SR register is repeatedly set by
hardware during the breakpoint or printf, which makes any attempt to clear the flag(s) ineffective.

Workaround

None.

2.10 I2C

2.10.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since it does not support the capability to
NACK an invalid byte/command.

Workaround

A higher-level mechanism must be used to verify that a write operation is being performed correctly at the target
device, such as:
• the SMBAL pin if it is supported by the host
• the alert response address (ARA) protocol
• the host-notify protocol

2.10.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error) while the microcontroller I2C peripheral attempts to
switch to Master mode by setting the START bit, the Start condition is not properly generated.

STM32F412xE and STM32F412xG
I2C

ES0305 - Rev 11 page 18/34

Workaround

In the I2C standard, it is allowed to send a Stop only at the end of the full byte (8 bits + acknowledge), so this
scenario is not allowed. Other derived protocols such as CBUS allow it, but they are not supported by the I2C
peripheral.
A software workaround consists in asserting the software reset using the SWRST bit of the I2C_CR1 control
register.

2.10.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter

Description

In case of repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in the I2C specification)
can be slightly violated when the I2C operates in Master standard mode at a frequency between 88 kHz and
100 kHz.
The issue can occur only in the following configuration:
• In Master mode
• In Standard mode at a frequency between 88 kHz and 100 kHz (no limitation in Fast mode)
• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if the SCL rise time
is less than 300 ns, the issue does not occur).

– If the slave stretches the clock.
The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode, if it is supported by the slave.

2.10.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I2C standard can be violated (as well as the maximum data
hold time of the current data (tHD;DAT)) under the conditions described below. This violation cannot be detected
because the OVR flag is not set (no transmit buffer underrun is detected).
This limitation can occur only under the following conditions:
• in Slave transmit mode
• with clock stretching disabled (NOSTRETCH = 1)
• if the software is late to write to the DR data register, but not late enough to set the OVR flag (the data

register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by clearing the bit NOSTRETCH of the
I2C_CR1 register.
If the master device does not allow it, ensure that the software is fast enough when polling the TXE or ADDR flag
to immediately write to the DR data register. For instance, use an interrupt on the TXE or ADDR flag and boost its
priority to the higher level.

STM32F412xE and STM32F412xG
I2C

ES0305 - Rev 11 page 19/34

2.10.5 Both SDA and SCL maximum rise times (tr) violated when the VDD_I2C bus voltage is higher
than ((VDD + 0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered from VDD, the internal
5-Volt tolerant circuitry is activated as soon the input voltage (VIN) reaches the VDD + diode threshold level. An
additional internal large capacitance then prevents the external pull-up resistor (RP) from rising the SDA and SCL
signals within the maximum timing (tr), which is 300 ns in Fast mode and 1000 ns in Standard mode.
The rise time (tr) is measured from VIL and VIH with levels set at 0.3 VDD_I2C and 0.7 VDD_I2C.

Workaround

The external VDD_I2C bus voltage must be limited to a maximum value of ((VDD + 0.3) / 0.7) V. As a result, when
the MCU is powered from VDD = 3.3 V, VDD_I2Cmust not exceed 5.14 V to be compliant with I2C specifications.

2.10.6 Spurious bus error detection in Master mode

Description

In Master mode, a bus error can be detected by mistake, thus causing the BERR flag to be wrongly raised in the
status register. This generates a spurious Bus Error interrupt if the interrupt is enabled. A bus error detection has
no effect on the transfer in Master mode, therefore the I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in Master mode, the BERR flag must be cleared by software. No other action
is required and the ongoing transfer can be handled normally.

2.10.7 Wrong data sampling when data set-up time (tSU;DAT) is smaller than one FMPI2CCLK period

Description

The I2C bus specification and user manual specify a minimum data set-up time (tSU;DAT) at:

• 250 ns in Standard-mode
• 100 ns in Fast-mode
• 50 ns in Fast-mode Plus
The I2C SDA line is not correctly sampled when tSU;DAT is smaller than one FMPI2CCLK (FMPI2C clock)
period: the previous SDA value is sampled instead of the current one. This may result in a wrong slave address
reception, a wrong received data byte, or a wrong received acknowledge bit.

Workaround

Apply one of the following measures:
• Increase the I2CCLK frequency to get an I2CCLK period smaller than the transmitter minimum data set-up

time, or,
• if it is possible, increase the transmitter minimum data set-up time.

2.11 USART

2.11.1 Idle frame is not detected if the receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter device is faster than
the USART receiver clock, the USART receive signal falls too early when receiving the character start bit, with the
result that the idle frame is not detected (the IDLE flag is not set).

STM32F412xE and STM32F412xG
USART

ES0305 - Rev 11 page 20/34

Workaround

None.

2.11.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register

Description

In full-duplex mode, when the Parity Error flag is set by the receiver at the end of a reception, it may be cleared
while transmitting by reading the USART_SR register to check the TXE or TC flags and writing data to the data
register. Consequently, the software receiver can read the PE flag as '0' even if a parity error occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.11.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection

Description

If the USART receiver is in Mute mode, and is configured to exit from Mute mode using the address mark
detection, when the USART receiver recognizes a valid address with a parity error, it exits from Mute mode
without setting the Parity Error flag.

Workaround

None.

2.11.4 Break frame is transmitted regardless of CTS input line status

Description

When the CTS hardware flow control is enabled (CTSE = 1) and the send break bit (SBK) is set, the transmitter
sends a break frame at the end of the current transmission regardless of CTS input line status. Consequently, if
an external receiver device is not ready to accept a frame, the transmitted break frame is lost.

Workaround

None.

2.11.5 RTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the RTS signal goes high when data is received. If this data was not
read and new data is sent to the USART (protocol violation), the RTS signal goes back to low level at the end of
this new data.
Consequently, the sender gets the wrong information that the USART is ready to receive further data.
On the USART side, an overrun is detected, which indicates that data has been lost.

Workaround

A workaround is required only if the other USART device violates the communication protocol, which is not the
case in most applications.
Two workarounds can be used:
• After data reception and before reading the data in the data register, the software takes over the control

of the RTS signal as a GPIO, and holds it high as long as needed. If the USART device is not ready, the
software holds the RTS pin high, and releases it when the device is ready to receive new data.

• Make sure the time required by the software to read the received data is always lower than the duration of
the second data reception. For example, this can be ensured by handling all the receptions in DMA mode.

STM32F412xE and STM32F412xG
USART

ES0305 - Rev 11 page 21/34

2.11.6 Start bit detected too soon when sampling for NACK signal from the smartcard

Description

According to ISO/IEC 7816-3 standard, when a character parity error is detected, the receiver shall transmit a
NACK error signal 10.5 ± 0.2 ETUs after the character START bit falling edge. In this case, the transmitter is able
to detect correctly the NACK signal until 11 ± 0.2 ETUs after the character START bit falling edge. In Smartcard
mode, the USART peripheral monitors the NACK signal during the receiver time frame (10.5 ± 0.2 ETUs), while
it should wait for it during the transmitter one (11 ± 0.2 ETUs). In real cases, this would not be a problem as the
card itself needs to respect a 10.7 ETU period when sending the NACK signal. However, this may be an issue to
undertake a certification.

Workaround

None.

2.11.7 Break request can prevent the transmission complete flag (TC) from being set

Description

After the end of transmission of a data (D1), the transmission complete (TC) flag is not set if the following
conditions are met:
• CTS hardware flow control is enabled,
• D1 is being transmitted,
• a break transfer is requested before the end of D1 transfer,
• CTS is de-asserted before the end of D1 data transfer.

Workaround

If the application needs to detect the end of a data transfer, check that the TC flag is set, and issue a break
request.

2.11.8 Guard time not respected when data are sent on TXE events

Description

In Smartcard mode, when sending a data on TXE event, the programmed guard time is not respected, that is the
data written in the data register is transferred to the bus without waiting the completion of the guard-time duration
corresponding to the previous transmitted data.

Workaround

Since in Smartcard mode the TC flag is set at the end of the guard time duration, wait until TC is set, then write
the data.

2.11.9 RTS is active while RE or UE = 0

Description

The RTS line is driven low as soon as the RTSE bit is set, even if the USART is disabled (UE = 0) or if the
receiver is disabled (RE = 0) that is not ready to receive data.

Workaround

After setting the UE and RE bits, configure the I/O used for RTS as an alternate function.

STM32F412xE and STM32F412xG
USART

ES0305 - Rev 11 page 22/34

2.12 SPI/I2S

2.12.1 BSY bit may stay high when SPI is disabled

Description

The BSY flag may remain high upon disabling the SPI while operating in:
• master transmit mode and the TXE flag is low (data register full).
• master receive-only mode (simplex receive or half-duplex bidirectional receive phase) and an SCK strobing

edge has not occurred since the transition of the RXNE flag from low to high.
• slave mode and NSS signal is removed during the communication.

Workaround

When the SPI operates in:
• master transmit mode, disable the SPI when TXE = 1 and BSY = 0.
• master receive-only mode, ignore the BSY flag.
• slave mode, do not remove the NSS signal during the communication.

2.12.2 Anticipated communication upon SPI transit from slave receiver to master

Description

Regardless of the master mode configured, the communication clock starts upon setting the MSTR bit even
though the SPI is disabled, if transiting from receive‑only (RXONLY = 1) or half‑duplex receive (BIDIMODE = 1
and BIDIOE = 0) slave mode to master mode.

Workaround

Apply one of the following measures:
• Before transiting to master mode, hardware‑reset the SPI via the reset controller.
• Set the MSTR and SPE bits of the SPI configuration register simultaneously, which forces the immediate

start of the communication clock. In transmitter configuration, load the data register in advance with the
data to send.

2.12.3 I2S slave in PCM short pulse mode sensitive to timing between WS and CK

Description

When the device is configured in I2S slave PCM short frame mode (I2SMOD = 1, I2SCFG[1:0] = 00 or 01,
I2SSTD[1:0] = 11, PCMSYNC = 0), with the asynchronous start disabled (ASTREN = 0), then if the master does
not respect the WS hold time versus clock, the data transmitted and received by the device get desynchronized
(shifted by one bit). This results in discarding two frames instead of one, irrespectively of the clock polarity.

Workaround

Use legacy mode (ASTERN = 1), while ensuring a perfect synchronization between the master and the slave.

2.12.4 Corrupted last bit of data and/or CRC received in Master mode with delayed SCK feedback

Description

When performing a receive transaction in I2S or SPI Master mode, the last bit of the transacted frame is not
captured when the signal provided by an internal feedback loop from the SCK pin exceeds a critical delay.
The lastly transacted bit of the stored data then keeps the value from the pattern received previously. As a
consequence, the last receive data bit may be wrong, and/or the CRCERR flag can be unduly asserted in the SPI
mode if any data under checksum, and/or just the CRC pattern is wrongly captured.
In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock periods can thus be
tolerated for the internal feedback delay.

STM32F412xE and STM32F412xG
SPI/I2S

ES0305 - Rev 11 page 23/34

The I2S mode is more sensitive than the SPI mode, especially in the case where an odd I2S prescaler factor is
set and the APB clock is the system clock divided by two. In this case, the internal feedback delay is lower than
1.5 APB clock period.
The main factors contributing to the delay increase are low VDD level, high temperature, high SCK pin capacitive
load, and low SCK I/O output speed. The SPI communication speed has no impact.

Workaround

The following workarounds can be adopted, jointly or individually:
• Decrease the APB clock speed.
• Configure the I/O pad of the SCK pin to be faster.
The following table gives the maximum allowable APB frequency (that still prevents the issue from occurring)
versus GPIOx_OSPEEDR output speed for the SCK pin, with a 30 pF capacitive load.

Table 5. Maximum allowable APB frequency at 30 pF load

OSPEEDR [1:0] for SCK pin Max. APB frequency for SPI mode
(MHz)

Max. APB frequency for I2S mode
(MHz)

11 (very high), 10 (high) 84 42

01 (medium) 75 35

00 (low) 25 16

2.12.5 Wrong CRC calculation when the polynomial is even

Description

When the CRC is enabled, the CRC calculation is wrong if the polynomial is even.

Workaround

Use odd polynomial.

2.12.6 Wrong CRC transmitted in Master mode with delayed SCK feedback

Description

When performing a transmit transaction on the SPI/I2S interface in SPI Master mode with CRC enabled, the
CRC data transmission may be corrupted if the delay of an internal feedback signal derived from the SCK output
(further feedback clock) is greater than two APB clock periods. While data and CRC bit shifting and transfer is
based on an internal clock, the CRC progressive calculation uses the feedback clock. If the delay of the feedback
clock is greater than two APB periods, the transmitted CRC value may get wrong.
The main factors contributing to the delay increase are low VDD level, high temperature, high SCK pin capacitive
load, and low SCK I/O output speed. The SPI communication speed has no impact.

Workaround

The following workarounds can be adopted, jointly or individually:
• Decrease the APB clock speed.
• Configure the I/O pad of the SCK pin to be faster.
The following table gives the maximum allowable APB frequency (that still prevents the issue from occurring)
versus GPIOx_OSPEEDR output speed for the SCK pin, with a 30 pF capacitive load.

Table 6. Maximum allowable APB frequency at 30 pF load

OSPEEDR [1:0] for SCK pin Max. APB frequency for SPI mode
(MHz)

Max. APB frequency for I2S mode
(MHz)

11 (very high) 90 42 (45 if VDD > 2.7 V)

STM32F412xE and STM32F412xG
SPI/I2S

ES0305 - Rev 11 page 24/34

OSPEEDR [1:0] for SCK pin Max. APB frequency for SPI mode
(MHz)

Max. APB frequency for I2S mode
(MHz)

10 (high) 90 36

01 (medium) 70 30

00 (low) 26 14

2.12.7 BSY flag may stay high at the end of a data transfer in Slave mode

Description

The BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The issue appears when
an accidental synchronization happens between the internal CPU clock and the external SCK clock provided by
the master.
This is related to the end of data transfer detection while the SPI is enabled in Slave mode.
As a consequence, the end of the data transaction may be not recognized when the software needs to monitor it
(for example at the end of a session before entering the low-power mode or before the direction of the data line
has to be changed at half duplex bidirectional mode). The BSY flag is unreliable to detect the end of any data
sequence transaction.

Workaround

When the NSS hardware management is applied and the NSS signal is provided by the master, the end of a
transaction can be detected by the NSS polling by the slave:
• If the SPI receiving mode is enabled, the end of a transaction with the master can be detected by the

corresponding RXNE event signaling the last data transfer completion.
• In SPI transmit mode, the user can check the BSY under timeout corresponding to the time necessary to

complete the last data frame transaction. The timeout must be measured from TXE event signaling the last
data frame transaction start (it is raised once the second bit transaction is ongoing). Either BSY becomes
low normally or the timeout expires when the synchronization issue happens.

When the above workarounds are not applicable, the following sequence can be used to prevent the
synchronization issue during SPI transmit mode:
1. Write the last data to the data register.
2. Poll TXE until it becomes high to ensure the data transfer has started.
3. Disable SPI by clearing SPE while the last data transfer is still ongoing.
4. Poll the BSY bit until it becomes low.
5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when the CPU has enough performance to disable the SPI after a TXE event
is detected, while the data frame transfer is still ongoing. It is impossible to achieve it when the ratio between
CPU and SPI clock is low, and the data frame is short. In this specific case, the timeout can be measured from
TXE, while calculating the fixed number of CPU clock periods corresponding to the time necessary to complete
the data frame transaction.

2.13 SDIO

2.13.1 No underrun detection with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the hardware flow control is
disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun condition occurs, the controller may transmit
a corrupted data block (with a wrong data word) without detecting the underrun condition when the clock
frequencies have the following relationship:3 × period PCLK2 + 3 × period SDIOCLK ≥ 32/ BusWidth × period SDIO_CK

STM32F412xE and STM32F412xG
SDIO

ES0305 - Rev 11 page 25/34

Workaround

Avoid the above-mentioned clock frequency relationship, by applying one of the following measures:
• Increment the APB frequency, or
• decrease the transfer bandwidth, or
• reduce SDIO_CK frequency.

2.13.2 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field. As a consequence,
after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the CCRCFAIL bit of the SDIO_STA register is
set.

Workaround

The CCRCFAIL bit in the SDIO_STA register must be ignored by the software. CCRCFAIL must be cleared by
setting the CCRCFAILC bit of the SDIO_ICR register after receiving the response to the CMD5 command.

2.14 bxCAN

2.14.1 bxCAN time-triggered communication mode not supported

Description

The time-triggered communication mode described in the reference manual is not supported. As a result,
timestamp values are not available. The TTCM bit of the CAN_MCR register must be kept cleared (time-triggered
communication mode disabled).

Workaround

None.

2.15 OTG_FS

2.15.1 Transmit data FIFO is corrupted when a write sequence to the FIFO is interrupted with
accesses to certain OTG_FS registers

Description

When the USB on-the-go full-speed peripheral is in Device mode, interrupting transmit FIFO write sequence with
read or write accesses to OTG_FS endpoint-specific registers (those ending in 0 or x) leads to corruption of the
next data written to the transmit FIFO.

Workaround

Ensure that the transmit FIFO write sequence is not interrupted with accesses to the OTG_FS registers.

2.15.2 Host packet transmission may hang when connecting through a hub to a low-speed device

Description

When the USB on-the-go full-speed peripheral connects to a low-speed device via a hub, the transmitter internal
state machine may hang. This leads, after a timeout expiry, to a port disconnect interrupt.

Workaround

None. However, increasing the capacitance on the data lines may reduce the occurrence.

STM32F412xE and STM32F412xG
bxCAN

ES0305 - Rev 11 page 26/34

Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the
ST product(s) identified in this documentation may be certified by various security certification bodies and/or
may implement our own security measures as set forth herein. However, no level of security certification and/or
built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the
customer needs both in relation to the ST product alone, as well as when combined with other components and/or
software for the customer end product or application. In particular, take note that:
• ST products may have been certified by one or more security certification bodies, such as Platform

Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms
(www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received
security certification along with the level and current status of such certification, either visit the relevant
certification standards website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can change from time to
time, customers should re-check security certification status/level as needed. If an ST product is not shown
to be certified under a particular security standard, customers should not assume it is certified.

• Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST
products. These certification bodies are therefore independently responsible for granting or revoking
security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations,
assessments, testing, or other activity carried out by the certification body with respect to any ST product.

• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard
technologies which may be used in conjunction with an ST product are based on standards which were not
developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open
technologies or for any methods which have been or may be developed to bypass, decrypt or crack such
algorithms or technologies.

• While robust security testing may be done, no level of certification can absolutely guarantee protections
against all attacks, including, for example, against advanced attacks which have not been tested for,
against new or unidentified forms of attack, or against any form of attack when using an ST product outside
of its specification or intended use, or in conjunction with other components or software which are used
by customer to create their end product or application. ST is not responsible for resistance against such
attacks. As such, regardless of the incorporated security features and/or any information or support that
may be provided by ST, each customer is solely responsible for determining if the level of attacks tested
for meets their needs, both in relation to the ST product alone and when incorporated into a customer end
product or application.

• All security features of ST products (inclusive of any hardware, software, documentation, and the
like), including but not limited to any enhanced security features added by ST, are provided on an
"AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.

STM32F412xE and STM32F412xG

ES0305 - Rev 11 page 27/34

Revision history

Table 7. Document revision history

Date Version Changes

21-Sep-2015 1 Initial release.

24-Mar-2016 2
Updated:
• Table 1: Device identification
• Table 5: Summary of documentation errata

15-Apr-2016 3
Updated:
• Table 1: Device identification
• Table 5: Summary of documentation errata

23-May-2016 4
Updated:
• Table 1: Device identification
• Table 5: Summary of documentation errata

17-Jun-2016 5

Updated:
• Table 1: Device identification

Added:
• Section 2.1.8: In some specific cases, DMA2 data corruption occurs

when managing AHB and APB2 peripherals in a concurrent way

Removed:
• Section 2.12: Quad-SPI limitation

30-Jun-2016 6

Updated:
• Table 5: Summary of documentation errata
• Section 2.5: SPI/I2S peripheral limitation

Removed:
• Section 2.11: DAC peripheral limitations

25-Jan-2017 7

Updated:
• Table 5: Summary of documentation errata
• Section 2.5: SPI/I2S peripheral limitation
• Section 2.5.2: BSY bit may stay high at the end of a data transfer in

slave mode
• Section 2.5.3: Corrupted last bit of data and/or CRC, received in

Master mode with delayed SCK feedback

Added:
• Table 6: Maximum allowable APB frequency at 30 pF load

6-Oct-2017 8

Updated:
• Table 5: Summary of documentation errata

Added:
• Section 2.3.6: Last received byte can be lost when using Reload mode

with NBYTES > 1
• Section 2.11: QuadSPI limitations
• Section 2.11.1: First nibble of data is not written after dummy phase
• Section 2.11.2: Wrong data can be read in memory-mapped after an

indirect mode operation

01-Oct-2020 9
Updated:
• Table 2: Device variants
• Table 5: Summary of documentation errata

19-Dec-2022 10
Updated introduction of Section 2: STM32F412xx silicon errata.

Added new system documentation erratum Section 2.1.9: One supply current
value in Sleep mode indicated in the datasheet is not tested in production.

STM32F412xE and STM32F412xG

ES0305 - Rev 11 page 28/34

Date Version Changes

28-Feb-2023 11

Added device revision B

Added errata sections: DAC, TIM, RTC, and OTG_FS

Added errata:
• Core: Store immediate overlapping exception return operation might

vector to incorrect interrupt
• System: Debugging Stop mode and SysTick timer
• Debugging Stop mode with WFE entry
• Possible delay in backup domain protection disabling/enabling after

programming the DBP bit
• PC13 signal transitions disturb LSE
• FMC: Wrong data read from a busy NAND memory
• Spurious clock stoppage with continuous clock feature enabled
• Data read might be corrupted when the write FIFO is disabled
• QUADSPI: Memory-mapped read operations may fail when timeout

counter is enabled
• Memory-mapped access in indirect mode clearing QUADSPI_AR

register
• DAC: DMA request not automatically cleared by clearing DMAEN
• DMA underrun flag not set when an internal trigger is detected on the

clock cycle of the DMA request acknowledge
• TIM: TRGO and TRGO2 trigger output failure
• PWM re-enabled in automatic output enable mode despite of system

break
• Consecutive compare event missed in specific conditions
• Output compare clear not working with external counter reset
• IWDG: RVU flag not reset in Stop
• PVU flag not reset in Stop
• RVU flag not cleared at low APB clock frequency
• PVU flag not cleared at low APB clock frequency
• RTC: RTC calendar registers are not locked properly
• RTC interrupt can be masked by another RTC interrupt
• Calendar initialization may fail in case of consecutive INIT mode entry
• Alarm flag may be repeatedly set when the core is stopped in debug
• I2C: SMBus standard not fully supported
• Start cannot be generated after a misplaced Stop
• Mismatch on the “Setup time for a repeated Start condition” timing

parameter
• Data valid time (tVD;DAT) violated without the OVR flag being set
• Both SDA and SCL maximum rise times (tr) violated when the

VDD_I2C bus voltage is higher than ((VDD + 0.3) / 0.7) V
• Spurious bus error detection in Master mode
• SPI/I2S: BSY bit may stay high when SPI is disabled
• Anticipated communication upon SPI transit from slave receiver to

master
• I2S slave in PCM short pulse mode sensitive to timing between WS

and CK
• Wrong CRC transmitted in Master mode with delayed SCK feedback
• SDIO: Wrong CCRCFAIL status after a response without CRC is

received
• OTG_FS: Transmit data FIFO is corrupted when a write sequence to

the FIFO is interrupted with accesses to certain OTG_FS registers
• Host packet transmission may hang when connecting through a hub to

a low-speed device

Modified errata:
• USART: RTS signal abnormally driven low after a protocol violation
• SPI/I2S: BSY flag may stay high at the end of a data transfer in Slave

mode

STM32F412xE and STM32F412xG

ES0305 - Rev 11 page 29/34

Date Version Changes

28-Feb-2023 11 (cont'd)

Removed errata not applicable for this product:
• System: One supply current value in Sleep mode indicated in the

datasheet is not tested in production
• IWDG: RVU and PVU flags are not reset in STOP mode

STM32F412xE and STM32F412xG

ES0305 - Rev 11 page 30/34

Contents

1 Summary of device errata. .2
2 Description of device errata. .5

2.1 Core . 5
2.1.1 Interrupted loads to SP can cause erroneous behavior . 5

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used . 5

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt 6

2.2 System . 7
2.2.1 Flash sector erase issue for sectors 5 to 11 . 7

2.2.2 Debugging Stop mode and SysTick timer . 7

2.2.3 Debugging Stop mode with WFE entry . 8

2.2.4 Debugging Sleep/Stop mode with WFE/WFI entry . 8

2.2.5 Wake-up sequence from Standby mode when using more than one wake-up source 8

2.2.6 Full JTAG configuration without NJTRST pin cannot be used . 9

2.2.7 MPU attribute to RTC and IWDG registers incorrectly managed . 9

2.2.8 Delay after an RCC peripheral clock enabling . 9

2.2.9 Internal noise impacting the ADC accuracy. 9

2.2.10 Possible delay in backup domain protection disabling/enabling after programming the DBP
bit . 10

2.2.11 PC13 signal transitions disturb LSE . 10

2.2.12 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2
peripherals in a concurrent way . 10

2.3 FSMC . 10
2.3.1 Dummy read cycles inserted when reading synchronous memories 10

2.3.2 Wrong data read from a busy NAND memory . 11

2.3.3 Spurious clock stoppage with continuous clock feature enabled . 11

2.3.4 Data read might be corrupted when the write FIFO is disabled . 11

2.4 QUADSPI . 11
2.4.1 First nibble of data not written after dummy phase . 11

2.4.2 Wrong data from memory-mapped read after an indirect mode operation. 12

2.4.3 Memory-mapped read operations may fail when timeout counter is enabled 12

2.4.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register 12

2.5 ADC . 13
2.5.1 ADC sequencer modification during conversion . 13

2.6 DAC . 13
2.6.1 DMA request not automatically cleared by clearing DMAEN . 13

2.6.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the
DMA request acknowledge . 13

STM32F412xE and STM32F412xG
Contents

ES0305 - Rev 11 page 31/34

2.7 TIM . 14
2.7.1 PWM re-enabled in automatic output enable mode despite of system break. 14

2.7.2 TRGO and TRGO2 trigger output failure . 14

2.7.3 Consecutive compare event missed in specific conditions . 14

2.7.4 Output compare clear not working with external counter reset . 15

2.8 IWDG . 15
2.8.1 RVU flag not reset in Stop. 15

2.8.2 PVU flag not reset in Stop. 15

2.8.3 RVU flag not cleared at low APB clock frequency . 16

2.8.4 PVU flag not cleared at low APB clock frequency . 16

2.9 RTC. 16
2.9.1 RTC calendar registers are not locked properly . 16

2.9.2 RTC interrupt can be masked by another RTC interrupt . 16

2.9.3 Calendar initialization may fail in case of consecutive INIT mode entry 18

2.9.4 Alarm flag may be repeatedly set when the core is stopped in debug 18

2.10 I2C . 18
2.10.1 SMBus standard not fully supported . 18

2.10.2 Start cannot be generated after a misplaced Stop. 18

2.10.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter 19

2.10.4 Data valid time (tVD;DAT) violated without the OVR flag being set 19

2.10.5 Both SDA and SCL maximum rise times (tr) violated when the VDD_I2C bus voltage is
higher than ((VDD + 0.3) / 0.7) V . 20

2.10.6 Spurious bus error detection in Master mode . 20

2.10.7 Wrong data sampling when data set-up time (tSU;DAT) is smaller than one FMPI2CCLK
period . 20

2.11 USART . 20
2.11.1 Idle frame is not detected if the receiver clock speed is deviated 20

2.11.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register .
. 21

2.11.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
. 21

2.11.4 Break frame is transmitted regardless of CTS input line status . 21

2.11.5 RTS signal abnormally driven low after a protocol violation. 21

2.11.6 Start bit detected too soon when sampling for NACK signal from the smartcard 22

2.11.7 Break request can prevent the transmission complete flag (TC) from being set 22

2.11.8 Guard time not respected when data are sent on TXE events. 22

2.11.9 RTS is active while RE or UE = 0 . 22

2.12 SPI/I2S . 23
2.12.1 BSY bit may stay high when SPI is disabled . 23

STM32F412xE and STM32F412xG
Contents

ES0305 - Rev 11 page 32/34

2.12.2 Anticipated communication upon SPI transit from slave receiver to master. 23

2.12.3 I2S slave in PCM short pulse mode sensitive to timing between WS and CK 23

2.12.4 Corrupted last bit of data and/or CRC received in Master mode with delayed SCK feedback
. 23

2.12.5 Wrong CRC calculation when the polynomial is even . 24

2.12.6 Wrong CRC transmitted in Master mode with delayed SCK feedback. 24

2.12.7 BSY flag may stay high at the end of a data transfer in Slave mode 25

2.13 SDIO. 25
2.13.1 No underrun detection with wrong data transmission . 25

2.13.2 Wrong CCRCFAIL status after a response without CRC is received 26

2.14 bxCAN . 26
2.14.1 bxCAN time-triggered communication mode not supported. 26

2.15 OTG_FS. 26
2.15.1 Transmit data FIFO is corrupted when a write sequence to the FIFO is interrupted with

accesses to certain OTG_FS registers . 26

2.15.2 Host packet transmission may hang when connecting through a hub to a low-speed device
. 26

Important security notice .27
Revision history .28

STM32F412xE and STM32F412xG
Contents

ES0305 - Rev 11 page 33/34

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

STM32F412xE and STM32F412xG

ES0305 - Rev 11 page 34/34

http://www.st.com/trademarks

	STM32F412xE and STM32F412xG
	1 Summary of device errata
	2 Description of device errata
	2.1 Core
	2.1.1 Interrupted loads to SP can cause erroneous behavior
	2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
	2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt

	2.2 System
	2.2.1 Flash sector erase issue for sectors 5 to 11
	2.2.2 Debugging Stop mode and SysTick timer
	2.2.3 Debugging Stop mode with WFE entry
	2.2.4 Debugging Sleep/Stop mode with WFE/WFI entry
	2.2.5 Wake-up sequence from Standby mode when using more than one wake-up source
	2.2.6 Full JTAG configuration without NJTRST pin cannot be used
	2.2.7 MPU attribute to RTC and IWDG registers incorrectly managed
	2.2.8 Delay after an RCC peripheral clock enabling
	2.2.9 Internal noise impacting the ADC accuracy
	2.2.10 Possible delay in backup domain protection disabling/enabling after programming the DBP bit
	2.2.11 PC13 signal transitions disturb LSE
	2.2.12 In some specific cases, DMA2 data corruption occurs when managing AHB and APB2 peripherals in a concurrent way

	2.3 FSMC
	2.3.1 Dummy read cycles inserted when reading synchronous memories
	2.3.2 Wrong data read from a busy NAND memory
	2.3.3 Spurious clock stoppage with continuous clock feature enabled
	2.3.4 Data read might be corrupted when the write FIFO is disabled

	2.4 QUADSPI
	2.4.1 First nibble of data not written after dummy phase
	2.4.2 Wrong data from memory-mapped read after an indirect mode operation
	2.4.3 Memory-mapped read operations may fail when timeout counter is enabled
	2.4.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register

	2.5 ADC
	2.5.1 ADC sequencer modification during conversion

	2.6 DAC
	2.6.1 DMA request not automatically cleared by clearing DMAEN
	2.6.2 DMA underrun flag not set when an internal trigger is detected on the clock cycle of the DMA request acknowledge

	2.7 TIM
	2.7.1 PWM re-enabled in automatic output enable mode despite of system break
	2.7.2 TRGO and TRGO2 trigger output failure
	2.7.3 Consecutive compare event missed in specific conditions
	2.7.4 Output compare clear not working with external counter reset

	2.8 IWDG
	2.8.1 RVU flag not reset in Stop
	2.8.2 PVU flag not reset in Stop
	2.8.3 RVU flag not cleared at low APB clock frequency
	2.8.4 PVU flag not cleared at low APB clock frequency

	2.9 RTC
	2.9.1 RTC calendar registers are not locked properly
	2.9.2 RTC interrupt can be masked by another RTC interrupt
	2.9.3 Calendar initialization may fail in case of consecutive INIT mode entry
	2.9.4 Alarm flag may be repeatedly set when the core is stopped in debug

	2.10 I2C
	2.10.1 SMBus standard not fully supported
	2.10.2 Start cannot be generated after a misplaced Stop
	2.10.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.10.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.10.5 Both SDA and SCL maximum rise times (tr) violated when the VDD_I2C bus voltage is higher than ((VDD + 0.3) / 0.7) V
	2.10.6 Spurious bus error detection in Master mode
	2.10.7 Wrong data sampling when data set-up time (tSU;DAT) is smaller than one FMPI2CCLK period

	2.11 USART
	2.11.1 Idle frame is not detected if the receiver clock speed is deviated
	2.11.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	2.11.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.11.4 Break frame is transmitted regardless of CTS input line status
	2.11.5 RTS signal abnormally driven low after a protocol violation
	2.11.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.11.7 Break request can prevent the transmission complete flag (TC) from being set
	2.11.8 Guard time not respected when data are sent on TXE events
	2.11.9 RTS is active while RE or UE = 0

	2.12 SPI/I2S
	2.12.1 BSY bit may stay high when SPI is disabled
	2.12.2 Anticipated communication upon SPI transit from slave receiver to master
	2.12.3 I2S slave in PCM short pulse mode sensitive to timing between WS and CK
	2.12.4 Corrupted last bit of data and/or CRC received in Master mode with delayed SCK feedback
	2.12.5 Wrong CRC calculation when the polynomial is even
	2.12.6 Wrong CRC transmitted in Master mode with delayed SCK feedback
	2.12.7 BSY flag may stay high at the end of a data transfer in Slave mode

	2.13 SDIO
	2.13.1 No underrun detection with wrong data transmission
	2.13.2 Wrong CCRCFAIL status after a response without CRC is received

	2.14 bxCAN
	2.14.1 bxCAN time-triggered communication mode not supported

	2.15 OTG_FS
	2.15.1 Transmit data FIFO is corrupted when a write sequence to the FIFO is interrupted with accesses to certain OTG_FS registers
	2.15.2 Host packet transmission may hang when connecting through a hub to a low-speed device

	Important security notice
	Revision history

