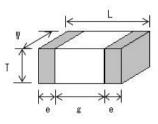
muRata

AgPd Termination Conductive Glue Mounting Chip Multilayer Ceramic Capacitors for Automotive

GCG1885G2A221GA01_ (0603, X8G:EIA, 220pF, DC100V)

_: packaging code

Reference Sheet


1.Scope

This product specification is applied to Chip Multilayer Ceramic Capacitors limited to Conductive Glue Mounting used for Automotive Electronic equipment.

2.MURATA Part NO. System

3. Type & Dimensions

(Unit:mm)							
(1)-1 L	(1)-2 W	(2) T	e	g			
1.6±0.2	0.8±0.1	0.8±0.1	0.2 to 0.5	0.5 min.			

4.Rated value

() ((3) Temperature Characteristics (Public STD Code):X8G(EIA)			(6) Capacitance	Specifications and Test Methods
Temp. coeff or Cap. Change	Temp. Range (Ref.Temp.)	Rated Voltage	Capacitance	Tolerance	(Operating Temp. Range)
0±30 ppm/°C	25 to 150 °C (25 °C)	DC 100 V	220 pF	±2 %	-55 to 150 °C

5.Package

mark	(8) Packaging	Packaging Unit
D	∳180mm Reel PAPER W8P4	4000 pcs./Reel
J	∮330mm Reel PAPER W8P4	10000 pcs./Reel

Product specifications in this catalog are as of Sep.12,2017,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering.

Please read rating and !Cautions first.

■AEC-Q200 Murata Standard Specification and Test Methods

			Specifi	ication.						
10			Temperature Compensating Type	High Dielectric Type			AEC-	Q200 Test Method		
	Pre-and Post-S Electrical Test	Stress			-					
2	High Temperat		-			Fix the capacitor to the supporting jig in the same manner and under the same conditions as No.16.				
	Exposure (Stor	age) Appearance	specifications in the following table. No marking defects		-			o.16. ours at 150±3°C. Set for		
		Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9:Within ±12.5%	-			e, then measure.		
		Change	(Whichever is larger)		4					
	Q/D.F. 30pFmin. : Q≧350 R7/L8 : 0.05 max. 30pFmax.: Q≧275+5C/2 R9 : 0.075max.									
			C: Nominal Capacitance(pF)	10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.						
		I.R.	More than 10,000MΩ or 500Ω · F		4					
			R9 : More than 3,000M Ω or 150 Ω ·	F						
2	Tomporatura) voling	(Whichever is smaller)							
3	Temperature C	ycing	The measured and observed charact specifications in the following table.	teristics should satisfy the				ng jig in the same manner ar		
		Appearance	No marking defects					lo.16. Perform the 1000 cycle nents listed in the following ta		
		Capacitance			-			nperature, then measure		
		Change	(Whichever is larger)		Step	1	2	3	4	
		Q/D.F.	30pFmin. : Q≧350	R7/L8 W.V.: 25Vmin.: 0.03 max.	Temp. (°C)	-55+0/-3	Room Temp.	125+3/-0(for ∆C/R7) 150+3/-0(for 5G/L8/R9)	Room Temp.	
			30pFmax.: Q ≧275+5C/2	W.V.: 16V : 0.05 max	Time			^		
			C: Nominal Capacitance (pF)	R9 : 0.075max.	(min.)	15±3	1	15±3	1	
		I.R.	More than 10,000M Ω or 500 $\Omega \cdot F$				1			
			(Whichever is smaller)		 Initial me 	asurement	for high d	ielectric constant type		
							-)+0/-10 °C for one hour and t	then set	
					for 24±2 h	ours at roor	n temnera	iture.		
							in tompore			
						e initial me				
4	Destructive		No defecto es observalitios		Perform th	e initial me				
4	Destructive Physical Analys	sis	No defects or abnormalities			e initial me				
	Destructive Physical Analys Moisture Resis			teristics should satisfy the	Perform th Per EIA-46	e initial me 69.	asuremen	t.	nd	
	Physical Analys		No defects or abnormalities The measured and observed charact specifications in the following table.	teristics should satisfy the	Perform th Per EIA-46 Fix the cap	e initial me 69.	asuremen e supporti	t. ng jig in the same manner ar	nd	
	Physical Analys		The measured and observed charact	teristics should satisfy the	Perform th Per EIA-46 Fix the cap under the s	e initial me 59. pacitor to th same condi	asuremen e supporti itions as N	t. ng jig in the same manner ar		
	Physical Analys	tance	The measured and observed charact specifications in the following table.	teristics should satisfy the	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s	e initial me 59. pacitor to th same condi 24-hour hea shown belo	e supporti itions as N at (25 to 6 w, 10 con	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times.		
	Physical Analys	tance Appearance	The measured and observed charact specifications in the following table. No marking defects		Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s	e initial me 59. pacitor to th same condi 24-hour hea shown belo	e supporti itions as N at (25 to 6 w, 10 con t room ter	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure.		
	Physical Analys	Appearance Capacitance	The measured and observed charact specifications in the following table. No marking defects Within ±3.0% or ±0.30pF	teristics should satisfy the R7/L8/R9: Within ±12.5%	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	tance Appearance	The measured and observed charact specifications in the following table. No marking defects Within ±3.0% or ±0.30pF (Whichever is larger)	R7/L8/R9: Within ±12.5%	Perform th Per EIA-46 Fix the cap under the sa Apply the 2 treatment s Set for 24 = Temperatur (°C) 70	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 6 w, 10 con t room ter Hu	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity	ó) idity	
	Physical Analys	Appearance Capacitance Change	The measured and observed charact specifications in the following table. No marking defects Within ±3.0% or ±0.30pF		Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 60	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change	The measured and observed charact specifications in the following table. No marking defects Within ±3.0% or ±0.30pF (Whichever is larger) 30pFmin. : Q≧350	R7/L8/R9: Within ±12.5%	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 60 55 50	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275 \pm 5C/2$ 10 pFmax.: Q $\geq 200 \pm 10C$	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 50 45 40	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275 + 5C/2$ 10 pFmax.: Q $\geq 200 + 10C$ C: Nominal Capacitance(pF)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Perform th Per EIA-46 Fix the cap under the 3 Apply the 2 treatment 3 Set for 24: Temperatur (°C) 70 65 65 50 50 45 50 40 35 30	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24 : Temperatur (°C) 70 65 65 50 55 50 45 40 30 25 20	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 64 w, 10 con t room ter Hu nidity ⁸⁰	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275 + 5C/2$ 10 pFmax.: Q $\geq 200 + 10C$ C: Nominal Capacitance(pF)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform th Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 70 65 65 65 65 65 55 55 50 0 25 20 15 10 10 10 10 10 10 10 10 10 10	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 63 w, 10 con t room ter Hu nidity 80 ~98%	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω ·	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 60 65 55 50 45 45 45 45 45 45 45 45 45 45 45 45 45	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 63 w, 10 con t room ter Hu nidity 80 ~98%	t. ng jig in the same manner ar lo.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity ~98% Humidity 80~98% Hum	ó) idity	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000M\Omega$ or $500\Omega \cdot F$	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform th Per EIA-46 Fix the cap under the 3 Apply the 2 treatment 3 Set for 24: Temperatur (°C) 70 65 60 55 50 45 50 45 50 50 40 55 50 15 10 5 10 5 10 5 10 10 5 10 10 5 10 10 10 10 10 10 10 10 10 10	e initial me 39. Dacitor to th same condi 24-hour hea shown belo ±2 hours a re	e supporti itions as N at (25 to 6 w, 10 con t room ter voor ter v	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity Humidity 80~98% Hum 90~98% 90~98% 90~ 100000000000000000000000000000000000	ó) idity	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω ·	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 60 65 65 55 55 50 55 50 55 50 55 50 55 50 55 50 50	e initial me 59. Sacitor to th same condi 24-hour helo ±2 hours a * * * * * * * * * * * * *	e supporti titions as N at (25 to 6) w, 10 con t room ter ys%	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. Mumidity 80~98% Hum 90~98% 90~98% 90~ 100 - 1	6)	
	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω ·	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 60 65 65 55 55 50 55 50 55 50 55 50 55 50 55 50 50	e initial me 59. Sacitor to th same condi 24-hour helo ±2 hours a * * * * * * * * * * * * *	e supporti titions as N at (25 to 6) w, 10 con t room ter ys%	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. Mumidity 80~98% Hum 90~98% 90~98% 90~ 100000000000000000000000000000000000	6)	
5	Physical Analys	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω ·	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 65 65 65 55 50 45 40 30 25 55 50 40 30 25 5 10 10 15 10 15 10 10 15 10 10 15 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	e initial me socitor to the same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4	e supporti titions as N at (25 to 65 w, 10 con t room ter ui di ty 80 >9%	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. Mumidity 80~98% Hum 90~98% 90~98% 90~ 100 - 1	6)	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10$ C C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω · (Whichever is smaller)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 65 65 65 55 50 45 40 30 25 55 50 40 30 25 5 10 10 15 10 15 10 10 15 10 10 15 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	e initial me socitor to the same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4	e supporti titions as N at (25 to 64 w, 10 con t room ter huidity 98% +10 - 2 c estimation t con t con	t. ng jig in the same manner ar io.16. °C) and humidity (80 to 98% secutive times. nperature, then measure. ^{90%} Humidity ^{80°} -98% Hum 90°-98% 90°-98% Humidity 10°-98% Humidity ^{90°} -98% Humidity 90°-98% Humidity ^{90°} -98% Humidity 90°-98% Humidity ^{90°} -98% Humidity	6)	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \ge 275 \pm 5C/2$ 10 pFmax.: Q $\ge 200 \pm 10C$ C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω · (Whichever is smaller)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24 : Temperatur (°C) 70 65 65 60 55 50 45 40 30 25 20 15 10 15 10 5 5 5 5 5 6 6 6 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7	e initial me solution to the same condi 24-hour heaving shown belo ± 2 hours a e Hum 90- 1 1 2 3 4	e supporti titions as N at (25 to 65 w, 10 con t room ter Hu hidity 98% 	t. ng jig in the same manner ar io.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. midity 80-98% Humidity 90-98% Jone 90% Humidity 90-98% Humidity 90-98% Humidity Humidity 80-98% Humidity Humidity 90-98% Humidity 90-98% Humidity Humidity 90-98% Humidity 90-98% Hum	6)	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24 = Temperatur (°C) 70 65 65 60 65 55 50 45 60 45 55 50 15 10 5 15 10 5 15 10 5 5 10 5 5 10 10 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	e initial me socitor to the same condi 24-hour hezes shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 vacitor to the same condi t at mesur 1 2 3 4	e supporti titions as N at (25 to 64 w, 10 con t room ter huidity 80 >9% +10 - 2 c e supporti titions as N e supporti titions as N +10 - 2 c e supporti titions as N - 2 c e supporti titions as N - 2 c e supporti titions as N - 2 c - 2 c	t. ng jig in the same manner ar io.16. °C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity ^{90-98%} ^{90-98%} Hum ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ⁹⁰⁻⁹⁸	6) idity 98% 100 100 100 100 100 100 100 10	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000$ MΩ or 500 Ω · F R9 : More than $3,000$ MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max. F teristics should satisfy the R7/L8/R9: Within ±12.5%	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 60 65 55 50 45 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	e initial me socitor to th same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 hum ti al measur 1 2 3 4 hum pacitor to th same condi 24-hour here 1 2 3 4 hum 1 2 3 4 hum hum hum hum hum hum hum hum	e supporti titions as N at (25 to 64 w, 10 con t room ter ui di ty 80 ~98% ~10 ~10 ~12 cc e supporti titions as N e supporti titions as	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity 90~98% J 90~98% Hum 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 100~1012 13 14 15 16 17 18 19 20 2 Humidity Humidity 100 11 12 13 14 15 16 17 18 19 20 2 Humidity Humidity Humidity Humidity Humidity Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J	6) idity 98% 100 100 100 100 100 100 100 10	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q ≥ 350 10 pF and over, 30 pF and below: Q $\geq 275+5C/2$ 10 pFmax.: Q $\geq 200+10C$ C: Nominal Capacitance(pF) More than $10,000$ MΩ or $500\Omega \cdot F$ R9 : More than $3,000$ MΩ or $150 \Omega \cdot I$ (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: Q ≥ 200	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max. F teristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 60 65 55 50 45 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	e initial me socitor to th same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 hum ti al measur 1 2 3 4 hum pacitor to th same condi 24-hour here 1 2 3 4 hum 1 2 3 4 hum hum hum hum hum hum hum hum	e supporti titions as N at (25 to 64 w, 10 con t room ter ui di ty 80 ~98% ~10 ~10 ~12 cc e supporti titions as N e supporti titions as	t. ng jig in the same manner ar io.16. °C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity ^{90-98%} ^{90-98%} Hum ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ^{90-98%} Humidity ^{90-98%} ^{90-98%} ⁹⁰⁻⁹⁸	6) idity 98% 100 100 100 100 100 100 100 10	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q \geq 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q \geq 200+10C C: Nominal Capacitance(pF) More than 10,000 MΩ or 500Ω · F R9 : More than 3,000 MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: Q \geq 200 30 pF and over: Q \geq 100+10C/3	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max. F teristics should satisfy the R7/L8/R9: Within ±12.5%	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 60 65 55 50 45 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	e initial me socitor to th same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 hum ti al measur 1 2 3 4 hum pacitor to th same condi 24-hour here 1 2 3 4 hum 1 2 3 4 hum hum hum hum hum hum hum hum	e supporti titions as N at (25 to 64 w, 10 con t room ter ui di ty 80 ~98% ~10 ~10 ~12 cc e supporti titions as N e supporti titions as	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity 90~98% J 90~98% Hum 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 100~1012 13 14 15 16 17 18 19 20 2 Humidity Humidity 100 11 12 13 14 15 16 17 18 19 20 2 Humidity Humidity Humidity Humidity Humidity Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J	6) idity 98% 100 100 100 100 100 100 100 10	
4 5 6	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q \geq 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q \geq 200+10C C: Nominal Capacitance(pF) More than 10,000 MΩ or 500Ω · F R9 : More than 3,000 MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: Q \geq 200 30 pF and over: Q \geq 100+10C/3 C: Nominal Capacitance(pF)	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max. F teristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 60 65 55 50 45 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	e initial me socitor to th same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 hum ti al measur 1 2 3 4 hum pacitor to th same condi 24-hour here 1 2 3 4 hum 1 2 3 4 hum hum hum hum hum hum hum hum	e supporti titions as N at (25 to 64 w, 10 con t room ter ui di ty 80 ~98% ~10 ~10 ~12 cc e supporti titions as N e supporti titions as	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity 90~98% J 90~98% Hum 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 90~98% J 90~98% Humidity 100~1012 13 14 15 16 17 18 19 20 2 Humidity Humidity 100 11 12 13 14 15 16 17 18 19 20 2 Humidity Humidity Humidity Humidity Humidity Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% Humidity 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J 90~98% J 90~98% J 90~98% Humidity 90~98% J 90~98% J	6) idity 98% 100 100 100 100 100 100 100 10	
5	Physical Analy: Moisture Resis	Appearance Capacitance Change Q/D.F. I.R. I.R. ty Appearance Capacitance Change Q/D.F.	The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pFmin. : Q \geq 350 10 pF and over, 30 pF and below: $Q \geq 275+5C/2$ 10 pFmax.: Q \geq 200+10C C: Nominal Capacitance(pF) More than 10,000 MΩ or 500Ω · F R9 : More than 3,000 MΩ or 150 Ω · I (Whichever is smaller) The measured and observed charact specifications in the following table. No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30 pF and over: Q \geq 200 30 pF and over: Q \geq 100+10C/3	R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max. R9 : 0.075max. F teristics should satisfy the R7/L8/R9: Within ±12.5% R7/L8 : 0.05 max.	Perform the Per EIA-46 Fix the cap under the s Apply the 2 treatment s Set for 24: Temperatur (°C) 70 65 65 60 65 55 50 45 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	e initial me socitor to th same condi 24-hour here shown belo ± 2 hours a e Hum 90- 1 1 2 3 4 hum ti al measur 1 2 3 4 hum pacitor to th same condi 24-hour here 1 2 3 4 hum 1 2 3 4 hum hum hum hum hum hum hum hum	e supporti titions as N at (25 to 64 w, 10 con t room ter ui di ty 80 ~98% ~10 ~10 ~12 cc e supporti titions as N e supporti titions as	t. ng jig in the same manner ar to.16. 5°C) and humidity (80 to 98% secutive times. nperature, then measure. ^{midity} Humidity 90~98% Humidity H	6) idity 98% 100 100 100 100 100 100 100 10	

■AEC-Q200 Murata Standard Specification and Test Methods

			0	<i>t</i> = = <i>t</i> = = =				
٧o	AEC-Q200) Test Item		ification.			AEC-Q200	Test Method
	, LO @200	Compensating Type High Dielectric Type		High Dielectric Type				
7	Operational Life	е	The measured and observed char	acteristics should satisfy the	Fix the ca	apacitor to th	e supporting jig i	n the same manner and
			specifications in the following table.		under the same conditions as No.16.			
		Appearance	No marking defects		Apply 200% of the rated voltage for 1000 ± 12 hours at $125\pm3^{\circ}C$ (for			
		Capacitance	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5%	Δ C/R7), 150±3°C(for 5G/L8/R9).			
		Change	(Whichever is larger)					ure, then measure.
		Q/D.F.	30pFmin. : Q≧350		The char	ge/discharge	e current is less th	han 50mA.
			10pF and over, 30pF and below:	R9 : 0.075max.				
			Q≧275+5C/2 10pFmax.: Q ≧200+10C		 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum 			
			C: Nominal Capacitance(pF)				•	e and set for 24 ± 2 hours at
		I.R.	More than $1.000M\Omega$ or $50\Omega \cdot F$				erform initial mea	
			(Whichever is smaller)					
			(,					
В	External Visual		No defects or abnormalities		Visual ins	spection		
9	Physical Dimer	nsion	Within the specified dimensions		Using cal	ipers		
0	Resistance to	Appearance	No marking defects		Per MIL-S	STD-202 Me	thod 215	
	Solvents	Capacitance	Within the specified tolerance				volume) of isopr	ropyl alcohol
		Change					volume) of min	
		Q/D.F.	20nEmin : 0>4000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	Coherry		. ,	oral opinio
		U.F.	30pFmin. : Q≧1000			2 : Terpene (
			30pFmax.: Q ≧400+20C	W.V.: 16V : 0.035 max.			by volume) of wa	
			C: Nominal Capacitance(pF)	R9 : 0.075max.	1part	(by volume)	of propylene gly	col monomethyl ether
					1 part	t (by volume)) of monoethanol	lamine
		I.R.	More than 10,000M Ω or 500 $\Omega \cdot F$					
			(Whichever is smaller)					
			· , , , , , , , , , , , , , , , , , , ,					
1	Mechanical	Appearance	No marking defects		Fix the ca	apacitor to th	e test jig in the s	ame manner and under the
	Shock	Capacitance						ks in each direction should be
		Change			applied along 3 mutually perpendicular axes of the test specimen			
		Q/D.F.	30pFmin. : Q≧1000	30pFmin. : Q≧1000 R7/L8 : W.V.: 25Vmin.: 0.025 max.		•		
			30pFmax.: Q ≧400+20C	W.V.: 16V : 0.035 max.	(18 shocks). The specified test pulse should be Half-sine and should have a			
			C: Nominal Capacitance(pF)	R9 : 0.075max.				d velocity change: 4.7m/s.
			er Herminar eapaolarioo(pr.)		duration .	o.omo, pour	t value. rooby an	a volooity onaligo. 4.711/0.
		IR	More than 10 000MQ or 500Q •F			_		
		I.R.	More than 10,000MΩ or 500Ω ·F					
			(Whichever is smaller)					
2	Vibration	Appearance	(Whichever is smaller) No defects or abnormalities			•	,0	ame manner and under the
2	Vibration	Appearance Capacitance	(Whichever is smaller)		same cor	, nditions as N	Io.16. The capac	itor should be subjected to a
2	Vibration	Appearance Capacitance Change	(Whichever is smaller) No defects or abnormalities Within the specified tolerance		same cor simple ha	nditions as N Armonic moti	lo.16. The capac on having a total	itor should be subjected to a amplitude of 1.5mm, the
2	Vibration	Appearance Capacitance	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	same cor simple ha frequency	nditions as N armonic moti y being varie	lo.16. The capac on having a total ed uniformly betw	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of
2	Vibration	Appearance Capacitance Change	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20	nditions as N armonic moti y being varie 000Hz. The t	lo.16. The capac on having a total d uniformly betw frequency range,	itor should be subjected to a amplitude of 1.5mm, the reen the approximate limits of from 10 to 2000Hz and
2	Vibration	Appearance Capacitance Change	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	same cor simple ha frequency 10 and 20 return to	nditions as N armonic moti y being varie 000Hz. The 10Hz, shouk	lo.16. The capac on having a total of uniformly betw frequency range, d be traversed in	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of from 10 to 2000Hz and approximately 20 minutes.
2	Vibration	Appearance Capacitance Change Q/D.F.	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be	to 16. The capac on having a total ad uniformly betw frequency range, d be traversed in e applied for 12 c	itor should be subjected to a amplitude of 1.5mm, the reen the approximate limits of from 10 to 2000Hz and
2	Vibration	Appearance Capacitance Change	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti	nditions as N armonic moti y being varie 000Hz. The 10Hz, shouk	to 16. The capac on having a total ad uniformly betw frequency range, d be traversed in e applied for 12 c	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of from 10 to 2000Hz and approximately 20 minutes.
2	Vibration	Appearance Capacitance Change Q/D.F.	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be	to 16. The capac on having a total ad uniformly betw frequency range, d be traversed in e applied for 12 c	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of from 10 to 2000Hz and approximately 20 minutes.
		Appearance Capacitance Change Q/D.F.	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F (Whichever is smaller)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti perpendic	nditions as N armonic moti y being varie 000Hz. The 10Hz, shouk on should be cular directio	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in e applied for 12 c ons	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually
	Vibration Thermal Shock	Appearance Capacitance Change Q/D.F.	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed char.	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti perpendic Fix the ca	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular directio	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in e applied for 12 c ons	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually
		Appearance Capacitance Change Q/D.F.	(Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed char. specifications in the following table	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular direction apacitor to th e same cond	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in e applied for 12 c ons	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually
		Appearance Capacitance Change Q/D.F. I.R.	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the	same cor simple ha frequency 10 and 20 return to This moti perpendic Fix the ca under the according	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular direction apacitor to the e same cond g to the two h	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in e applied for 12 c ons	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects Within ±2.5% or ±0.25pF 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max.	same cor simple ha frequency 10 and 20 return to This moti perpendic Fix the ca under the according table(Max	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular direction apacitor to the e same cond g to the two h kimum transl	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in a applied for 12 c ons the supporting jig i itions as No.16. I neat treatments li fer time is 20 sec	itor should be subjected to a amplitude of 1.5mm, the een the approximate limits of from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance Change	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the b. R7/L8/R9: Within ±10.0%	same cor simple ha frequency 10 and 20 return to This moti perpendic Fix the ca under the according table(Max	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular directio apacitor to th e same cond g to the two f kimum transl apperature, th	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in a applied for 12 c ons te supporting jig i itions as No.16. I neat treatments li fer time is 20 sec en measure	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 ± 2 hours at
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧ 350 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the b. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max.	same cor simple ha frequency 10 and 20 return to This moti perpendic Fix the ca under the according table(Max	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular direction apacitor to the e same cond g to the two h kimum transl	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in a applied for 12 c ons the supporting jig i itions as No.16. I neat treatments li fer time is 20 sec	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24±2 hours at
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance Change	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmax.: Q ≧ 350 30pFmax.: Q ≧ 275+5C/2 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Maz room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular directio apacitor to th e same cond g to the two f kimum transl apperature, th	Io.16. The capac on having a total d uniformly betw frequency range, d be traversed in a applied for 12 c ons te supporting jig i itions as No.16. I neat treatments li fer time is 20 sec en measure	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 ± 2 hours at
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance Change	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) The measured and observed charse specifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧ 350 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Maz room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, shouk on should be cular directio apacitor to th e same cond g to the two h ximum transi aperature, th Step	lo.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons ne supporting jig i itions as No.16. If neat treatments lifter time is 20 sec en measure 1 -55+0/-3	tor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 \pm 2 hours at $\frac{2}{125+3/-0(for \Delta C/R7)}$
		Appearance Capacitance Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω · F (Whichever is smaller) The measured and observed charspecifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin.: Q≧350 30pFmax.: Q ≧275+5C/2 C: Nominal Capacitance(pF) 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Maz room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular direction apacitor to the e same cond g to the two h ximum transl aperature, the Step Femp.(°C)	Io.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons the supporting jig i itions as No.16. If neat treatments li fer time is 20 sec en measure 1	itor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 ± 2 hours at $\frac{2}{125+3/-0(for \Delta C/R7)}$
		Appearance Capacitance Change Q/D.F. I.R. I.R. Appearance Capacitance Change	(Whichever is smaller)No defects or abnormalitiesWithin the specified tolerance $30pFmin. : Q \ge 1000$ $30pFmax.: Q \ge 400+20C$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$ (Whichever is smaller)The measured and observed char- specifications in the following tableNo marking defectsWithin ±2.5% or ±0.25pF(Whichever is larger) $30pFmin. : Q \ge 350$ $30pFmax.: Q \ge 275+5C/2$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Maz room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, shouk on should be cular direction apacitor to the e same cond g to the two h ximum transl aperature, the Step Femp.(°C) Time	lo.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons ne supporting jig i itions as No.16. If neat treatments lifter time is 20 sec en measure 1 -55+0/-3	tor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 \pm 2 hours at $\frac{2}{125+3/-0(for \Delta C/R7)}$
		Appearance Capacitance Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	 (Whichever is smaller) No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧ 1000 30pFmax.: Q ≧ 400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω · F (Whichever is smaller) The measured and observed charspecifications in the following table No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin.: Q≧350 30pFmax.: Q ≧275+5C/2 C: Nominal Capacitance(pF) 	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Max room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular directio apacitor to th e same cond g to the two f kimum transl aperature, the Step Temp.(°C) Time (min.)	Io.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons ne supporting jig i titions as No.16. If neat treatments lit fer time is 20 sec en measure 1 -55+0/-3 15±3	thor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 \pm 2 hours at $\frac{2}{125+3/-0(for \Delta C/R7)}$ 150+3/-0 (for 5G/L8/R9) 15 \pm 3
		Appearance Capacitance Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	(Whichever is smaller)No defects or abnormalitiesWithin the specified tolerance $30pFmin. : Q \ge 1000$ $30pFmax.: Q \ge 400+20C$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$ (Whichever is smaller)The measured and observed char- specifications in the following tableNo marking defectsWithin ±2.5% or ±0.25pF(Whichever is larger) $30pFmin. : Q \ge 350$ $30pFmax.: Q \ge 275+5C/2$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Max room terr	nditions as N armonic moti y being varie 000Hz. The 10Hz, should on should be cular directio apacitor to th e same cond g to the two f kimum transl operature, the Step Temp.(°C) Time (min.)	Io.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons ne supporting jig i itions as No.16. If neat treatments lif fer time is 20 sec en measure 1 -55+0/-3 15±3	tor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24±2 hours at 2 2 $125+3/-0(for \Delta C/R7)$ $150+3/-0 (for 5G/L8/R9)$ 15 ± 3 c constant type
		Appearance Capacitance Change Q/D.F. I.R. Appearance Capacitance Change Q/D.F.	(Whichever is smaller)No defects or abnormalitiesWithin the specified tolerance $30pFmin. : Q \ge 1000$ $30pFmax.: Q \ge 400+20C$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$ (Whichever is smaller)The measured and observed char- specifications in the following tableNo marking defectsWithin ±2.5% or ±0.25pF(Whichever is larger) $30pFmin. : Q \ge 350$ $30pFmax.: Q \ge 275+5C/2$ C: Nominal Capacitance(pF)More than 10,000M Ω or $500\Omega \cdot F$	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V : 0.035 max. R9 : 0.075max. acteristics should satisfy the a. R7/L8/R9: Within ±10.0% R7/L8 : W.V.: 25Vmin.: 0.025 max. GCG21BL81H104K: 0.03 max. W.V.: 16V : 0.035 max.	same cor simple ha frequency 10 and 20 return to This moti perpendid Fix the ca under the according table(Max room terr • Initial m Perform a	haditions as N armonic moti y being varie 000Hz. The \pm 10Hz, should on should be cular directio apacitor to th e same cond g to the two h scimum transid perature, the Step Femp.(°C) Time (min.)	Io.16. The capac on having a total duniformly betw frequency range, d be traversed in e applied for 12 c ons ne supporting jig i itions as No.16. If neat treatments lif fer time is 20 sec en measure 1 -55+0/-3 15±3	thor should be subjected to a amplitude of 1.5mm, the even the approximate limits of , from 10 to 2000Hz and approximately 20 minutes. cycle in each 3 mutually n the same manner and Perform the 300 cycles isted in the following conds). Set for 24 \pm 2 hours at $\frac{2}{125+3/-0(for \Delta C/R7)}$ 150+3/-0 (for 5G/L8/R9) 15 \pm 3

■AEC-Q200 Murata Standard Specification and Test Methods

			Specifi	cation.	
No	AEC-Q2	200 Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method
14	ESD	Appearance Capacitance Change Q/D.F.	No marking defects Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF)	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V :0.035 max. R9 : 0.075max.	Per AEC-Q200-002
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)		
15	Electrical Chatacteri- zation	Appearance Capacitance Change Q/D.F.	No defects or abnormalities Within the specified tolerance 30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	Visual inspection. The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table.
			30pFmax.: Q ≧400+20C C: Nominal Capacitance(pF)	W.V.: 16V : 0.035 max. R9 : 0.075max.	$\begin{tabular}{ c c c c c c c } \hline Char. & $\Delta C, 5G$ & $\Delta C, 5G$ & $(more than 1000pF)$ & $(more than 1000pF)$ & $(more than 1000pF)$ & $R7, R9, L8(C \leq 10 \mu F)$ & $Frequency$ & $1\pm 0.1 MHz$ & $1\pm 0.1 kHz$ & $Voltage$ & 0.5 to $5Vrms$ & $1\pm 0.2 Vrms$ & $1\pm 0.2 Vr$
		I.R. 25°C	More than 100,000MΩ or 1000Ω · F (Whichever is smaller)	More than 10,000MΩ or 500Ω ⋅ F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C(for Δ C/R7)/ 150°C (for 5G/L8/R9) within 2 minutes of charging.
		I.R. 125℃	More than 10,000MΩ or 100Ω • F (Whichever is smaller)	More than 1,000MΩ or 10Ω•F (Whichever is smaller)	
		I.R. 150°C	More than 10,000MΩ or 100Ω • F (Whichever is smaller)	More than 1,000MΩ or 1Ω•F (Whichever is smaller)	
		Dielectric Strength	No failure		No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/ discharge current is less than 50mA.
16	Terminal Strength	Appearance	No marking defects		Mount the capacitor on the test jig in Fig.1 using a conductive glue (HEREAUS"PC3000").
		Capacitance Change Q/D.F.	Within specified tolerance 30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	The conductive glue is hardened at 140°C for 30minites. Then apply *shear tension in parallel with the test jig for 60sec.
		G/D.1.	30pFmax.: Q ≧400+20C C: Nominal Capacitance(pF)	W.V.: 16V: 0.035max. R9 : 0.075max.	*Show in the table 1 Ag Pd electrode C Alumina
		I.R.	More than 10,000MΩ or 500Ω •F (Whichever is smaller) Type Shar GCG15	e Tension 2.0N	
			GCG31	2. 7N 4. 9N 6. 9N 12. 6N	Type a b c GCG15 0.4 1.5 0.5 GCG18 1.0 3.0 1.2 GCG21 1.2 4.0 1.65 GCG31 2.2 5.0 2.0 GCG32 2.2 5.0 2.9 Fig. 1

AEC-Q200 Murata Standard Specification and Test Methods

			Spe	cification.	
No	AEC-Q20	0 Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method
17	Beam Load Test		Chip thickness < Chip L dimension : 3.2mm mim Chip thickness	. > s > 0.5mm rank : 20N s ≦0.5mm rank : 8N	Place the capacitor in the beam load fixture as Fig 2. Apply a force. < Chip Length : 2.5mm max. > Iron Board < Chip Length : 3.2mm min. > $I \to I \to$
18	Capacitance Temperature Characteristics	Capacitance Change	Within the specified tolerance. (Table A)	R7 : Within $\pm 15\%$ (-55°C to +125°C) L8 : Within $\pm 15\%$ (-55°C to +125°C) Within +15/-40% (+125°C to +150°C) R9 : Within $\pm 15\%$ (-55°C to +150°C)	The capacitance change should be measured after 5 min. at (1)Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (Δ C: +25°C to +125°C, 5G:+25°C to +150°C other temp. coifficient.:+25°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1. The capacitance drift is calculated by dividing the differences between the moving and minimum measured upluss in the step
		Temperature Coefficient Capacitance Drift	Within the specified tolerance. (Table A) Within ±0.2% or ±0.05 pF (Whichever is larger.)		between the maximum and minimum measured values in the step 1,3 and 5 by the cap value in step 3. Step Temperature.(°C) 1 25±2 2 -55±3 3 25±2 4 125±3(for ΔC/R7), 150±3(for 5G/R9/L8) 5 25±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.
	Table A	1	J	V	
ſ		Nominal Valu	100	Capacitance Change from	n 25°C (%)
1	Char.	(nnm/°C)	-55	-30	-10

-0.24 Note 1: Nominal values denote the temperature coefficient within a range of 25° C to 125° C(for Δ C)/ 150° C(for 5G).

Min.

Max.

0.58

5C/5G

(ppm/°C)

0± 30

Min.

-0.17

Max.

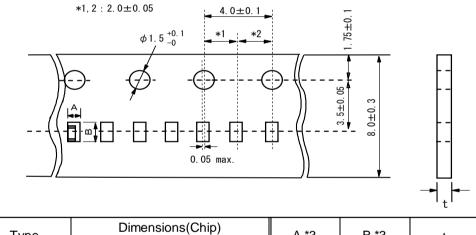
0.40

Min.

-0.11

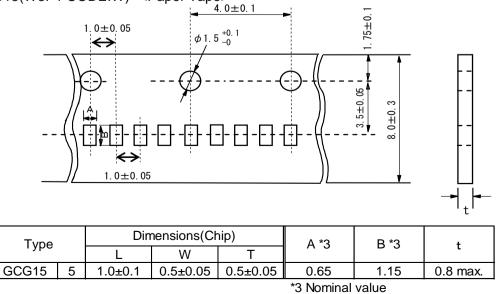
Max.

0.25


1.Tape Carrier Packaging(Packaging Code:D/E/W/F/L/J/K)

1.1 Minimum Quantity(pcs./reel)

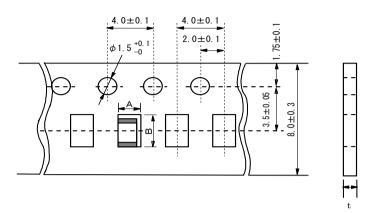
			φ180mm reel	φ330m	φ330mm reel	
Ту	/pe	Paper	[.] Tape	Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E	Code:W	Code:L	Code:J/ F	Code:K
GCG15	5	10000	20000	/	50000	\backslash
GCG15	5	(W8P2)	(W8P1)		(W8P2)	
GCG18	8	4000			10000	
	6	4000			10000	
GCG21	9	4000			10000	
	В			3000		10000
GCG31	М			3000		10000
60631	С			2000		6000
GCG32	D			1000		4000
60632	E			1000		4000


1.2 Dimensions of Tape

(1)GCG15(W8P2 CODE:D/E/J/F) <Paper Tape>

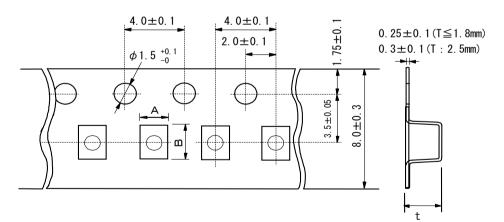
Type		Din	nensions(Ch	nip)	A *3	B *3	+
Турс		L	W	Т	<i>N</i> 0	80	Ľ
GCG15	5	1.0±0.1	0.5±0.05	0.5±0.05	0.65	1.15	0.8 max.
					*3 Nominal	value	

(2)GCG15(W8P1 CODE:W) <Paper Tape>

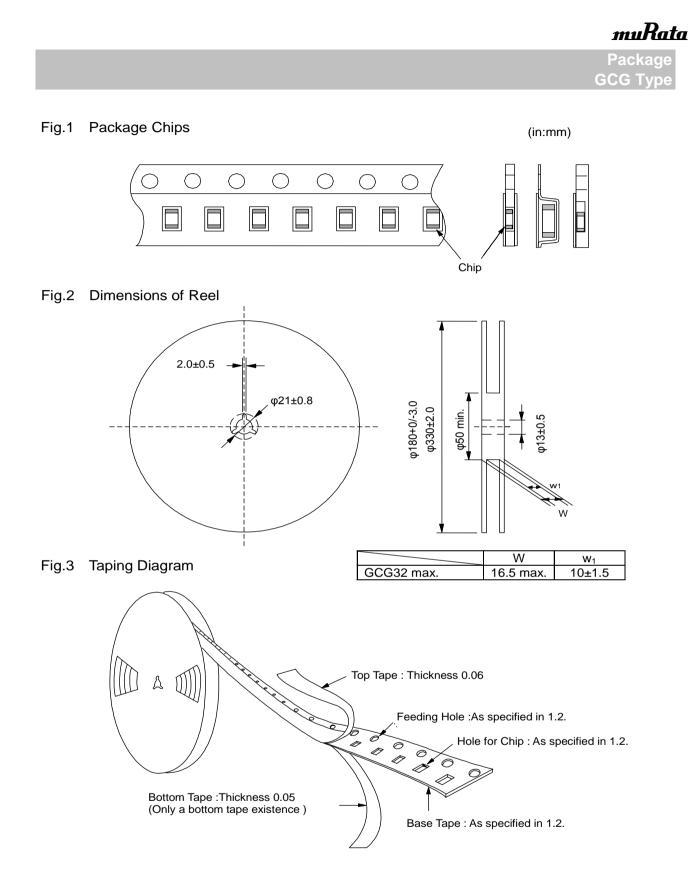


(in:mm)

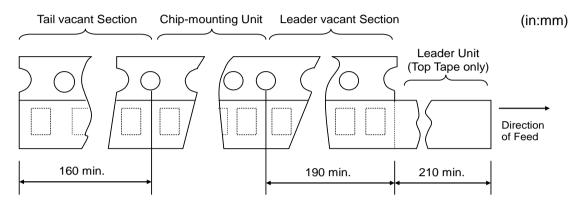
(in:mm)


Package GCG Type

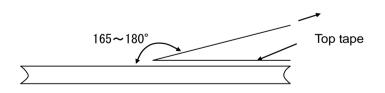
(3)GCG18/21 <Paper Tape>


T		[Dimentions(Ch	iip)	٨	Δ B	
Туре		L	W	Т	A	В	t
GCG18	8	1.6±0.2	0.8±0.1	0.8±0.1	1.05±0.10	1.85±0.10	
GCG21	6	2.0±0.3	1.25±0.2	0.6±0.1	1.55±0.15	2.30 ± 0.15	1.1 max.
60621	9	2.0±0.3	1.23±0.2	0.85±0.1	1.55±0.15	2.30±0.15	

(4)GCG21/31/32 <Plastic Tape>


T		Dimentions(Chip)				5		
Туре		L	W	Т	A	В	t	
GCG21	В	2.0±0.3	1.25 ± 0.2	1.25 ± 0.2	1.45 ± 0.20	2.25 ± 0.20	2.0 max.	
	М		1.6 ± 0.3	1.15 ± 0.2	4 00 1 0 00	2 50 1 0 20	1.7 max.	
GCG31		с	3.2±0.3	1.0±0.3	1.6 ± 0.3	1.90 ± 0.20	3.50 ± 0.20	2.5 max.
	C	3.2±0.4	1.6 ± 0.4	1.6 ± 0.4	2.10 ± 0.20	3.60 ± 0.20	2.5 max.	
GCG32	D	3.2 ± 0.4	.4 2.5±0.3	2.0 ± 0.3	2.80±0.20	3.50 ± 0.20	3.0 max.	
60632	Е	3.2±0.4		2.5 ± 0.3			3.7 max.	

(in:mm)



- 1.3 Tapes for capacitors are wound clockwise shown in Fig.3.
 - (The sprocket holes are to the right as the tape is pulled toward the user.)
- 1.4 Part of the leader and part of the vacant section are attached as follows.

- 1.5 Accumulate pitch : 10 of sprocket holes pitch = 40±0.3mm
- 1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
- 1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 1.8 There are no jointing for top tape and bottom tape.
- 1.9 There are no fuzz in the cavity.
- 1.10 Break down force of top tape : 5N min. Break down force of bottom tape : 5N min. (Only a bottom tape existence)
- 1.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. There are possibly to change the material and dimension due to some impairment.
- 1.12 Peeling off force : 0.1N to 0.6N in the direction as shown below.

1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

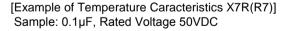
Limitation of Applications

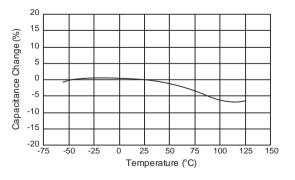
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

①Aircraft equipment
 ②Aerospace equipment
 ③Undersea equipment
 ④Power plant control equipment
 ⑤Medical equipment
 ⑥Transportation equipment(vehicles,trains,ships,etc.)
 ⑦Traffic signal equipment
 ⑧Data-processing equipment
 ⑩Application of similar complexity and/or reliability requirements to the applications listed in the above.

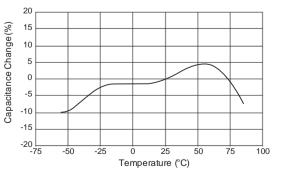
Storage and Operation condition

 If store the chip multilayer ceramic capacitors in an atmosphere consisting of high temperature or humidity, sulfur or chlorine gases, contaminants attach to the surface of external electrode, and bondability with conductive glue may deteriorate. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammoria gas, etc.). Storage environment must be at room temperature of +5°C to +40°C and a relative humidity of 20% to 70%, and use the product within six months after receipt.


In case of packaging, do not open the last wrappend, polyethylene bag, till just before using. After unpacking, immediately reseal, or store in a desiccator containing a desiccant.

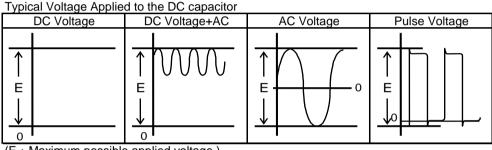

- 2. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the bondability with conductive glue and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.
- 3. This product is chip monolithic ceramic capacitor limited to conductive glue mounting. Do not apply mounting method other than conductive glue. Flow or reflow soldering can result in a lack of adhesive strength on the outer electrode by poor wettability, which may result in chips breaking loose from the PCB.

Rating


1.Temperature Dependent Characteristics

- 1. The electrical characteristics of the capacitor can change with temperature.
- 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to ensure suitable capacitance values.
 - (1) Select a suitable capacitance for the operating temperature range.
 - (2) The capacitance may change within the rated temperature. When you use a high dielectric constant type capacitor in a circuit that needs a tight (narrow) capacitance tolerance (e.g., a time-constant circuit), please carefully consider the temperature characteristics, and carefully confirm the various characteristics in actual use conditions and the actual system.

[Example of Temperature Characteristics X5R(R6)] Sample: 22µF, Rated Voltage 4VDC



2.Measurement of Capacitance

- 1. Measure capacitance with the voltage and frequency specified in the product specifications.
- 1-1. The output voltage of the measuring equipment may decrease occasionally when capacitance is high. Please confirm whether a prescribed measured voltage is impressed to the capacitor.
- 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

3.Applied Voltage

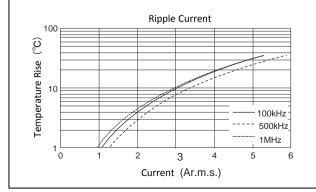
- 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.
- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.
- (2) Abhornal voltages (surge voltage, static electricity, puise voltage, etc.) shall not exceed the fated DC voltage

(E : Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers .

The time duration until breakdown depends on the applied voltage and the ambient temperature.


4.Type of Applied Voltage and Self-heating Temperature

1.Confirm the operating conditions to make sure that no large current is flowing into the capacitor due to the continuous application of an AC voltage or pulse voltage.

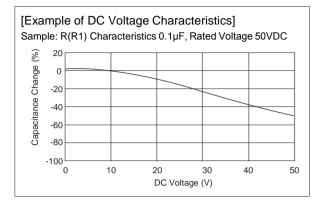
When a DC rated voltage product is used in an AC voltage circuit or a pulse voltage circuit, the AC current or pulse current will flow into the capacitor; therefore check the self-heating condition.

Please confirm the surface temperature of the capacitor so that the temperature remains within the upper limits of the operating temperature, including the rise in temperature due to self-heating. When the capacitor is used with a high-frequency voltage or pulse voltage, heat may be generated by dielectric loss.

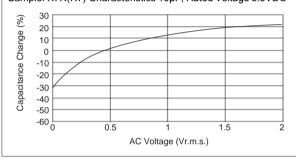
<Applicable to Rated Voltage of less than 100VDC> The load should be contained so that the self-heating of the capacitor body remains below 20°C, when measuring at an ambient temperature of 25°C. [Example of Temperature Rise (Heat Generation) in Chip Multilayer Ceramic Capacitors in Contrast to Ripple Current] Sample: R(R1) characteristics 10μ F, Rated voltage: DC10V

muRata ∆Caution

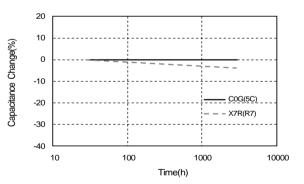
5. DC Voltage and AC Voltage Characteristic

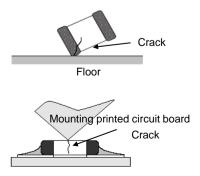

- The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.
- 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance.
- (1) Determine whether the capacitance change caused by the applied voltage is within the allowed range .
- (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases, even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is used in a circuit that requires a tight (narrow) capacitance tolerance (e.g., a time constant circuit), please carefully consider the voltage characteristics, and confirm the various characteristics in the actual operating conditions of the system.
- The capacitance values of high dielectric constant type capacitors changes depending on the AC voltage applied.
 Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

6. Capacitance Aging

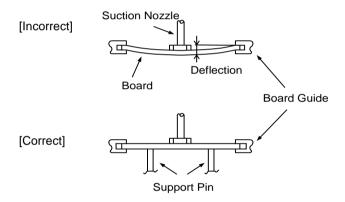

 The high dielectric constant type capacitors have an Aging characteristic in which the capacitance value decreases with the passage of time. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance (e.g., a time-constant circuit), please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. In addition, check capacitors using your actual appliances at the intended environment and operating conditions.

7.Vibration and Shock


- 1. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
- Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor. Do not use a dropped capacitor because the quality and reliability may be deteriorated.
- 3. When printed circuit boards are piled up or handled, the corner of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.



[Example of Change Over Time (Aging characteristics)]


Mounting

1. Selection of Conductive Adhesive, Mounting Process, and Bonding Strength

1. The acuired bonding strength may change greatly depending on the conductive adhesive to be used. Be sure to confirming the desired performance can be acquired in the assumed monting process with the conductive adhesive to be used.

2.Maintenance of the Mounting (pick and place) Machine

- 1. Make sure that the following excessive forces are not applied to the capacitors. Check the mounting in the actual device under actual use conditions ahead of time.
- 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any damage or cracking. Please take into account the following precautions and recommendations for use in your process.
 - (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.

2.Dirt particles and dust accumulated in the suction nozzle and suction mechanism prevent the nozzle from moving smoothly. This creates excessive force on the capacitor during mounting, causing cracked chips. Also, the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

3.Moisture proof

1.To prevent the silver electrode migration, keep parts under low moisture condition with resin coating and the equivalent.

4.Coating

 A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process. The stress is affected by the amount of resin and curing contraction. Select a resin with low curing contraction. The difference in the thermal expansion coefficient between a coating resin or a molding resin and the capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown.

Select a resin for which the thermal expansion coefficient is as close to that of the capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress.

- Select a resin that is less hygroscopic. Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor. An epoxy resin can be used as a less hygroscopic resin.
- 3. The halogen system substance and organic acid are included in coating material, and a chip corrodes by the kind of Coating material. Do not use strong acid type.

Others

1. Under Operation of Equipment

- 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of an electric shock.
- 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions.
- 1-3. Confirm the environment in which the equipment will operate is under the specified conditions.
 - Do not use the equipment under the following environments.
 - (1) Being spattered with water or oil.
 - (2) Being exposed to direct sunlight.
 - (3) Being exposed to ozone, ultraviolet rays, or radiation.
 - (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
 - (5) Any vibrations or mechanical shocks exceeding the specified limits.
 - (6) Moisture condensing environments.
- 1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Others

- 2-1. In an Emergency
- (1) If the equipment should generate smoke, fire, or smell, immediately turn off or unplug the equipment. If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
- (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitor's high temperature.
- 2-2. Disposal of waste

When capacitors are disposed of, they must be burned or buried by an industrial waste vendor with the appropriate licenses.

- 2-3. Circuit Design
- (1) Addition of Fail Safe Function

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short. If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

(2) This series are not safety standard certified products.

2-4. Remarks

Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used. The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.

Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

muRata Notice

Rating

1.Operating Temperature

- 1. The operating temperature limit depends on the capacitor.
- 1-1. Do not apply temperatures exceeding the maximum operating temperature.
 It is necessary to select a capacitor with a suitable rated temperature that will cover the operating temperature range.
 It is also necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor.
- 1-2. Consider the self-heating factor of the capacitor The surface temperature of the capacitor shall not exceed the maximum operating temperature including self-heating.

2.Atmosphere Surroundings (gaseous and liquid)

- 1. Restriction on the operating environment of capacitors.
- 1-1. Capacitors, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor.
- 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation.
- 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time.

3.Piezo-electric Phenomenon

1. When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

Others

1.Transportation

- 1. The performance of a capacitor may be affected by the conditions during transportation.
- 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation.
 - (1) Climatic condition
 - low air temperature : -40°C
 - change of temperature air/air : -25°C/+25°C
 - · low air pressure : 30 kPa
 - · change of air pressure : 6 kPa/min.

(2) Mechanical condition

Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging.

- 1-2. Do not apply excessive vibration, shock, or pressure to the capacitor.
 - (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor.
 - (2) When the sharp edge of an air driver, tweezers, a chassis, etc. impacts strongly on the surface of the capacitor, the capacitor may crack and short-circuit.
- 1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. A capacitor dropped accidentally during processing may be damaged.

2.Characteristics Evaluation in the Actual System

- 1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 2. Since a voltage dependency and temperature dependency exists in the capacitance of high dielectric type ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system. Evaluate the surge resistance in the actual system as required.

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. Your are requested not to use our product deviating from this product specification.
- 3.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.