Ultrafast high voltage rectifier

Datasheet - production data

Features

- Ultrafast switching
- Low reverse current
- Low thermal resistance
- Reduces switching and conduction losses
- Insulated package ISOTOP:
- Insulated voltage: 2500 Vrms sine
- Capacitance: 45 pF
- ECOPACK ${ }^{\circledR}$ 2 compliant component

Description

This device, which uses ST 400 V technology, is especially suited for use in switching welding equipment.

Table 1: Device summary

Symbol	Value
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 100 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{RRM}}$	400 V
$\mathrm{~T}_{\mathrm{j}}$ (max.)	$150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {F }}$ (typ.)	0.95 V
$\mathrm{t}_{\text {rr }}$ (max.)	70 ns

8 TM: ISOTOP is a trademark of STMicroelectronics

1

Characteristics
Table 2: Absolute ratings (limiting values, per diode)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive peak reverse voltage	400	V
$\mathrm{I}_{\mathrm{F}(\mathrm{RMS})}$	Forward rms current	200	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current, $\delta=0.5$	$\mathrm{~T}_{\mathrm{C}}=60^{\circ} \mathrm{C}$, per diode	100
$\mathrm{I}_{\mathrm{FSM}}$	Surge non repetitive forward current	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sinusoidal	1000
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	A	
T_{j}	Maximum operating junction temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Table 3: Thermal parameters

Symbol	Parameter		Maximum values	Unit
Rth(j-c)	Junction to case	Per diode	0.60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	0.35	
$\mathrm{R}_{\text {th(c) }}$	Coupling		0.1	

When the diodes 1 and 2 are used simultaneously:
$\Delta T_{j}($ diode1 $)=P_{\text {(diode1) }} \times R_{\text {th }(\mathrm{j}-\mathrm{c})}$ (per diode) $+\mathrm{P}_{\text {(diode2) }} \times \mathrm{R}_{\text {th(c) }}$
Table 4: Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{R}}{ }^{(1)}$	Reverse leakage current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$V_{R}=V_{\text {RRM }}$	-		75	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		-	75	750	
$\mathrm{VF}^{(2)}$	Forward voltage drop	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}$	-		1.45	V
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			0.95	1.20	
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		-	0.90	1.15	
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~A}$	-	1.20	1.50	
		$\mathrm{T}_{\mathrm{j}}=15{ }^{\circ} \mathrm{C}$		-	1.15	1.45	

Notes:

${ }^{(1)}$ Pulse test: $t_{p}=5 \mathrm{~ms}, \delta<2 \%$
${ }^{(2)}$ Pulse test: $\mathrm{tp}_{\mathrm{p}}=380 \mu \mathrm{~s}, \delta<2 \%$

To evaluate the maximum conduction losses, use the following equation:
$\left.\mathrm{P}=0.85 \times \mathrm{IF}_{\mathrm{F}} \mathrm{AV}\right)+0.003 \times \mathrm{IF}^{2}{ }^{(\mathrm{RMS})}$

Table 5: Dynamic characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	Reverse recovery time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{F}=0.5 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \end{aligned}$	-		80	ns
			$\begin{aligned} & \mathrm{I}_{F}=1 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		70	95	
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}, \\ & \mathrm{~d} / \mathrm{F} / \mathrm{dt}=-200 \mathrm{~A} / \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=50 \mathrm{~V} \end{aligned}$	-	105	140	
Irm	Reverse recovery current	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-200 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	15	20	A
QrR	Reverse recovery charge			-	750		nC
S	Softness factor			-	0.3		
tir	Forward recovery time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}, \\ & \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{FR}}=1.5 \times \mathrm{V}_{\mathrm{Fmax}} \end{aligned}$	-	500	800	ns
Vfp	Forward recovery voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{F}=100 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mathrm{ss} \end{aligned}$	-	2.9		V

1.1 Characteristics (curves)

Figure 3: Relative variation of thermal impedance junction to case versus pulse duration

Figure 4: Peak reverse recovery current versus dlf/dt (typical values, per diode)

Figure 5: Reverse recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per diode)

Figure 6: Reverse recovery charges versus dif/dt (typical values, per diode)

Figure 9: Forward recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per diode)

Figure 10: Junction capacitance versus reverse voltage applied (typical values, per diode)

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: $1.3 \mathrm{~N} \cdot \mathrm{~m}$
- Maximum torque value: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

STMicroelectronics strongly recommends the use of the screws delivered with this product.
The use of any other screws is entirely at the user's own risk and will invalidate the warranty.
2.1 ISOTOP package information

Figure 11: ISOTOP package outline

Table 6: ISOTOP package mechanical data

Ref.	Dimensions			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	11.80	12.20	0.460	0.480
A1	8.90	9.10	0.350	0.358
B	7.80	8.20	0.307	0.323
C	0.75	0.85	0.030	0.033
C2	1.95	2.05	0.077	0.081
D	37.80	38.20	1.488	1.504
D1	31.50	31.70	1.240	1.248
E	25.15	25.50	0.990	1.004
E1	23.85	24.15	0.939	0.951
E2		24.80		
G	14.90	15.10	0.587	0.5946
G1	12.60	12.80	0.496	0.504
G2	3.50	4.30	0.138	0.169
F	4.10	4.30	0.161	0.169
F1	4.60	5	0.181	0.197
H	-0.05	0.1	-0.002	0.004
Diam P	4	4.30	0.157	0.169
P1	4	4.40	0.157	0.173
S	30.10	30.30	1.185	1.193

3 Ordering information

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty. ${ }^{(1)}$	Delivery mode
STTH200F04TV1	STTH200F04TV1	ISOTOP	27 g (without screws)	10 (with screws)	Tube

Notes:

${ }^{(1)}$ This product is supplied with 40 terminal screws and washers for each tube. The screws and washers are supplied in a separate pack with the order.

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
04-Dec-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

