COMPLIANT

HALOGEN FREE

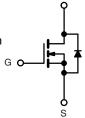
1.60 mm

Vishay Siliconix

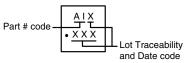
N-Channel 12 V (D-S) MOSFET

PRODUCT SUMMARY								
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)					
12	0.019 at V _{GS} = 4.5 V	9						
	0.022 at V _{GS} = 2.5 V	9	9.6 nC					
	0.026 at V _{GS} = 1.8 V		9.0110					
	0.065 at V _{GS} = 1.2 V	3						

PowerPAK SC-75-6L-Single


1.60 mm

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- New Thermally Enhanced PowerPAK[®] SC-75 Package
 - Small Footprint Area
 - Low On-Resistance
 - Thin 0.75 mm Profile
- 100 % R_a Tested
- Compliant to RoHS Directive 2002/95/EC

- Portable Devices
- · Low Voltage Gate Drive Load Switch

Ordering Information: SiB404DK-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	(T _A = 25 °C, un	ess otherwis	se noted)			
Parameter		Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	12	V		
Gate-Source Voltage		V _{GS}	± 5			
	T _C = 25 °C		9 ^a			
Continuous Drain Current (T _J = 150 °C)	T _C = 70 °C	1 .	9 ^a			
Continuous Diain Current (1) = 130 C)	T _A = 25 °C	- I _D	8.9 ^{b, c}			
	T _A = 70 °C		7.1 ^{b, c}	Α		
Pulsed Drain Current		I _{DM}	35			
Continuous Source-Drain Diode Current	T _C = 25 °C	1-	9 ^a]		
Continuous Source-Drain Diode Current	T _A = 25 °C	- I _S	2.1 ^{b, c}	1		
	T _C = 25 °C		13			
Maximum Dawar Dissipation	T _C = 70 °C	P _D	8.4	w		
Maximum Power Dissipation	T _A = 25 °C	гD	2.5 ^{b, c}]		
	T _A = 70 °C		1.6 ^{b, c}			
Operating Junction and Storage Temperature Rar	T _J , T _{stg}	- 55 to 150	°C			
Soldering Recommendations (Peak Temperature)	d, e		260			

THERMAL RESISTANCE RATINGS									
Parameter		Symbol	Typical	Maximum	Unit				
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R _{thJA}	41	51	°C/W				
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	7.5	9.5	C/VV				

Notes:

- a. Package limited, $T_C = 25$ °C.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. See solder profile (www.vishay.com/ppg?73257). The PowerPAK SC-75 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 105 °C/W.

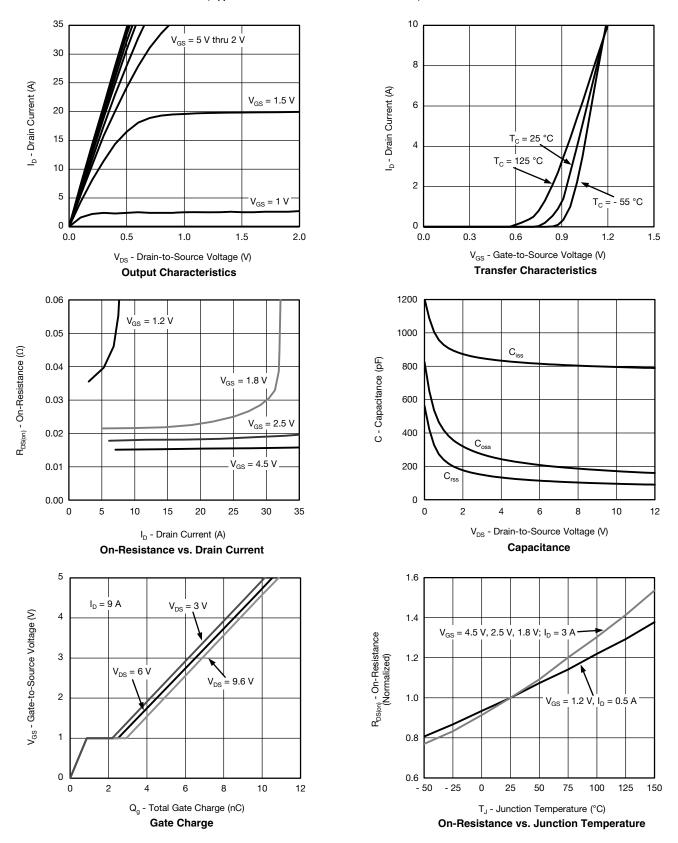
SiB404DK

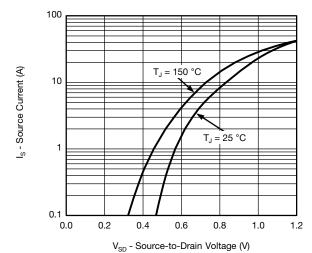
Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)									
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	12			V			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA		12		mV/°C			
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	η = 250 μΑ		- 2.5					
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.35		0.8	V			
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$			± 100	nA			
Zero Gate Voltage Drain Current	l	V _{DS} = 12 V, V _{GS} = 0 V			1	μΑ			
Zero Gate voltage Drain Current	I _{DSS}	V _{DS} = 12 V, V _{GS} = 0 V, T _J = 55 °C			10				
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	15			Α			
		$V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$		0.015	0.019				
Durin Course On Otata Davistana a		V _{GS} = 2.5 V, I _D = 2 A		0.018	0.022	0			
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 1.8 V, I _D = 1 A		0.021	0.026	Ω			
		$V_{GS} = 1.2 \text{ V}, I_D = 0.5 \text{ A}$		0.035	0.065				
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 3 \text{ A}$		30		S			
Dynamic ^b									
Total Gate Charge	Q _g			9.6	15				
Gate-Source Charge	Q_{gs}	$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 9 \text{ A}$		0.9		nC			
Gate-Drain Charge	Q_{gd}			1.7					
Gate Resistance	R_g	f = 1 MHz	0.6	3.2	6.4	Ω			
Turn-On Delay Time	t _{d(on)}			5	10				
Rise Time	t _r	V_{DD} = 6 V, R_L = 0.86 Ω		20	40	ns			
Turn-Off DelayTime	t _{d(off)}	$I_D \cong 7 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		20	40	115			
Fall Time	t _f			10	20				
Drain-Source Body Diode Characteristic	s								
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			9	Α			
Pulse Diode Forward Current	I _{SM}				35				
Body Diode Voltage	V_{SD}	I _S = 7 A, V _{GS} = 0 V		0.8	1.2	V			
Body Diode Reverse Recovery Time	Body Diode Reverse Recovery Time t _{rr}			15	30	ns			
Body Diode Reverse Recovery Charge	Q_{rr}	I _F = 7 A, dl/dt = 100 A/μs, T _{.I} = 25 °C		5	10	nC			
Reverse Recovery Fall Time	t _a	$\frac{1}{1} = \frac{1}{1} = \frac{1}$		8		ns			
Reverse Recovery Rise Time	t _b			7					

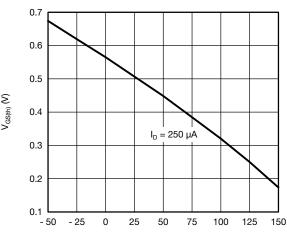
Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

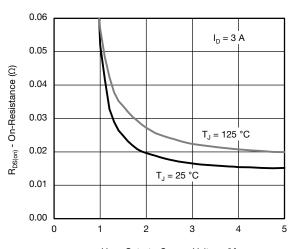

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

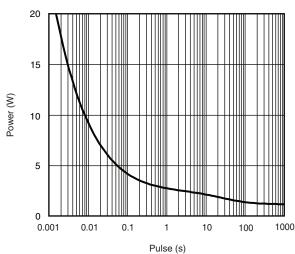


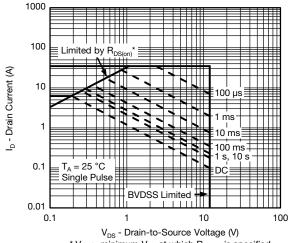
TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Vishay Siliconix


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

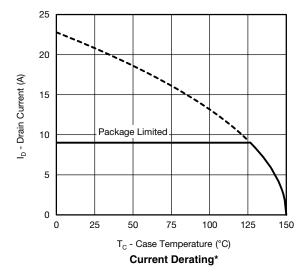

Source-Drain Diode Forward Voltage

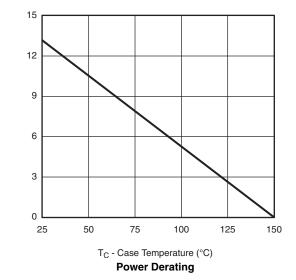

 T_J - Temperature (°C) Threshold Voltage

 V_{GS} - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

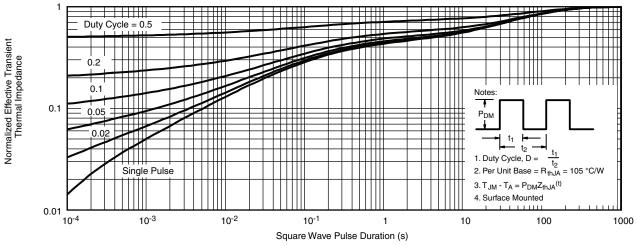
* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified


Safe Operating Area, Junction-to-Ambient

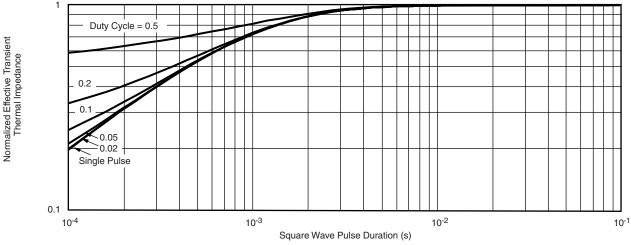


Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


Power (W)

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


Vishay Siliconix

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

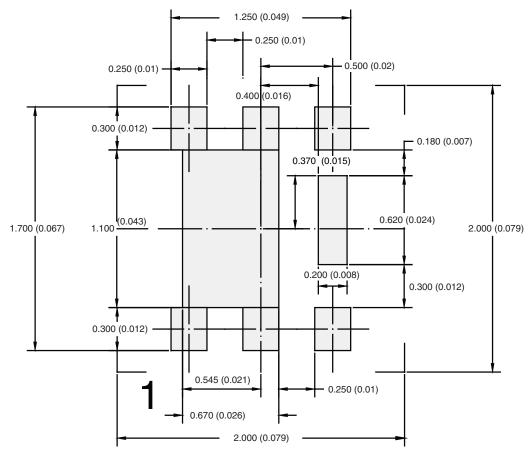
Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67099.

PowerPAK® SC75-6L

			SINGL	E PAD			DUAL PAD						
DIM	M	ILLIMETE	RS		INCHES		MILLIMETERS		RS		INCHES		
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
b	0.18	0.25	0.33	0.007	0.010	0.013	0.18	0.25	0.33	0.007	0.010	0.013	
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010	
D	1.53	1.60	1.70	0.060	0.063	0.067	1.53	1.60	1.70	0.060	0.063	0.067	
D1	0.57	0.67	0.77	0.022	0.026	0.030	0.34	0.44	0.54	0.013	0.017	0.021	
D2	0.10	0.20	0.30	0.004	0.008	0.012							
Е	1.53	1.60	1.70	0.060	0.063	0.067	1.53	1.60	1.70	0.060	0.063	0.067	
E1	1.00	1.10	1.20	0.039	0.043	0.047	0.51	0.61	0.71	0.020	0.024	0.028	
E2	0.20	0.25	0.30	0.008	0.010	0.012							
E3	0.32	0.37	0.42	0.013	0.015	0.017							
е		0.50 BSC			0.020 BSC	;	0.50 BSC			0.020 BSC			
K		0.180 TYP 0.007 TYP				0.245 TYP 0.010 TYP							
K1	0.275 TYP				0.011 TYP		0.320 TYP 0.013 TYP						
K2	0.200 TYP				0.008 TYP			0.200 BSC			0.008 TYP		
K3	0.255 TYP				0.010 TYP								
K4	0.300 TYP			0.012 TYP									
L	0.15	0.25	0.35	0.006	0.010	0.014	0.15	0.25	0.35	0.006	0.010	0.014	
T							0.03	0.08	0.13	0.001	0.003	0.005	


ECN: C-07431 - Rev. C, 06-Aug-07

DWG: 5935

Document Number: 73000 06-Aug-07

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC75-6L Single

Dimensions in mm/(Inches)

Return to Index

ATTLICATION NOT

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.