
Pro Micro RP2040 Hookup Guide

Introduction
The Pro Micro RP2040 is a low-cost, high-performance board with flexible digital interfaces featuring the
Raspberry Pi Foundation's RP2040 microcontroller. The board uses well known Pro Micro footprint with castellated
mounting holes.

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though
depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

SparkFun Pro Micro - RP2040
 DEV-18288

https://www.sparkfun.com/
https://www.sparkfun.com/products/17717
https://www.sparkfun.com/products/18288
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/18288
https://www.sparkfun.com/products/18288
https://www.sparkfun.com/products/14743

Tools

You will need a soldering iron, solder, and general soldering accessories for a secure connection when using the
plated through hole pads.

Prototyping Accessories

Depending on your setup, you may want to use IC hooks for a temporary connection. However, you will want to
solder header pins to connect devices to the plated through holes for a secure connection.

SparkFun Pro Micro - RP2040
 DEV-18288

USB 3.1 Cable A to C - 3 Foot
 CAB-14743

Soldering Iron - 60W (Adjustable Temperature)
 TOL-14456

Solder Lead Free - 15-gram Tube
 TOL-09163

Breadboard - Self-Adhesive (White)
 PRT-12002

Photon Stackable Header - 12 Pin
 PRT-14322

https://www.sparkfun.com/categories/49
https://www.sparkfun.com/products/18288
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14743
https://www.sparkfun.com/products/14456
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14456
https://www.sparkfun.com/products/9163
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9163
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/14322
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14322
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/9741

For those that want to take advantage of the Qwiic enabled devices, you'll want to grab a Qwiic cable.

Suggested Reading

If you aren't familiar with the Qwiic system, we recommend reading here for an overview if you decide to take
advantage of the Qwiic connector.

Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren't familiar with them.

Break Away Headers - Straight
 PRT-00116

IC Hook with Pigtail
 CAB-09741

SparkFun Qwiic Cable Kit
 KIT-15081

Qwiic Cable - 100mm
 PRT-14427

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - Breadboard Jumper (4-pin)
 PRT-14425

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/116
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9741
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/14429
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14425
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14425
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about
through-hole soldering.

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

Serial Peripheral Interface (SPI)
SPI is commonly used to connect microcontrollers to
peripherals such as sensors, shift registers, and SD
cards.

Pulse Width Modulation
An introduction to the concept of Pulse Width
Modulation.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Analog vs. Digital
This tutorial covers the concept of analog and digital
signals, as they relate to electronics.

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/analog-vs-digital

Hardware Overview

Old School to New School

The Pro Micro RP2040 design uses the original Pro Micro and Qwiic Pro Micro USB C's footprint.

Older Pro Micro
with ATmega32U4

Newer Qwiic Pro Micro USB C
with RP2040

The Pinout

All of the Pro Micro RP2040's GPIO and power pins are broken out to two, parallel headers. Some pins are for
power input or output, other pins are dedicated GPIO pins. Further, the GPIO pins can have special function
depending on how they are multiplexed Here's a map of which pin is where and what special hardware functions it
may have.

Click on image for a closer view.

Note: For more information on the multiplexed pins, check out "section 1.4.3 GPIO Functions"of the RP2040
datasheet.

https://www.sparkfun.com/products/12640
https://www.sparkfun.com/products/17717
https://cdn.sparkfun.com/assets/e/2/7/6/b/ProMicroRP2040_Graphical_Datasheet.pdf

RP2040 DATASHEET (31.2MB)

Power

There are a variety of power and power-related nets broken out to connectors and through hole pads. Each pad
has a castellated edge. The back of the board also has the USB pins broken out for power

These nets consist of the following:

V is the voltage provided from the USB connector.
+ is the raw, unregulated voltage input for the Pro Micro RP2040. If the board is powered via USB (i.e. V),
the voltage at this pin will be about 4.8V (USB's 5V minus a Schottky diode drop). On the other hand, if the
board is powered externally, through this pin, the applied voltage can be up to 5.3V.
3.3V is the voltage supplied to the on-board RP2040. We suggest using regulated 3.3V when connecting to
this pin. If the board is powered through the raw "+" pin, this pin can be used as an output to supply 3.3V
other devices.
RST can be used to restart the Pro Micro RP2040. There is a built-in reset button to reset the board.
However, the pin is broken out if you need to access this pin externally. This pin is pulled high by a 10kΩ
resistor on the board, and is active-low, so it must be connected to ground to initiate a reset. The Qwiic Pro
Micro will remain "off" until the reset line is pulled back to high.
GND, of course, is the common, ground voltage (0V reference) for the system.

USB Pins

On the back of the board you can access the USB data pins and power for either USB 1.1 Host or Device.

https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Power_Nets-Top.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Power_Nets-Bottom.jpg

GPIO Pins

The Pro Micro RP2040 breaks out the GPIO pins to plated through holes pads on the edge of the board. Each pad
is castellated as well.

Top of Board
with Edge PTH Pads

Bottom of Board
with Edge PTH Pads

The Pro Micro's GPIO pins — 20 in all — (if you include the two pins on the Qwiic connector as well) are multi-
talented. Every pin can be used as a digital input or output, for blinking LEDs or reading button presses. These
pins are referenced via an integer value between 0 and 29.

Four pins feature analog to digital converters (ADCs) and can be used as analog inputs. These are useful for
reading potentiometers or other analog devices.

Note: There is an additional ADC pin that is not broken out on the RP2040. It is connected to the internal
temperature sensor. While it is not broken out on the board, you can access the temperature sensor readings
using examples from either the C/C++ or MicroPython SDK.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_USB_Pads.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Castellated_PTH_Pins.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Castellated_PTH_Pins_Back.jpg
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion

All pins can be set with the pulse width modulation (PWM) functionality, which allows for a form of analog output.
The RP2040 can only provide a total of up to 16 controllable PWM outputs.

There are hardware UART (serial), I C, and SPI pins available as well. These can be used to interface with digital
devices like serial LCDs, XBees, IMUs, and other serial sensors.

The RP2040 has 26 external interrupts, which allow you to instantly trigger a function when a pin goes either high,
low, or changes state.

Qwiic Connector

The board includes a Qwiic connector to easily connect Qwiic enabled I C devices to the board. SCL is connected
to GPIO17 while SDA is connected to GPIO16

Note: If you decide not to use the I C port with a Qwiic-enabled device, you can technically use the Qwiic
cable with either male or female jumpers as GPIO pins.

2

2

2

Qwiic Cable - Female Jumper (4-pin)
 CAB-14988
Retired

Qwiic Cable - Breadboard Jumper (4-pin)
 PRT-14425

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Qwiic_Connector.jpg
https://www.sparkfun.com/products/retired/14988
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/retired/14988
https://www.sparkfun.com/products/14425
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14425

On-Board LEDs

There are two LEDs on the Pro Micro RP2040. The red LED indicates whether power is present. The other is the
addressable WS2812 RGB LED. The addressable LED is connected to GPIO25 . You'll to define functions or use
the WS2812 library to control that LED.

There is a pad on the back of the board that is connected to the WS2812's DO pin. If you decide to daisy chain
more LEDs, you'll want to solder to this pad.

Flexible Qwiic Cable - Female Jumper (4-pin)
 CAB-17261

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Power_LED_Addressable_WS2812_LED.jpg
https://www.sparkfun.com/products/17261
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/17261

External Flash Memory

The Pro Micro RP2040 includes a W25Q128JVPIM, which adds 128Mb (16MB) of flash memory externally.

Boot Button

The boot button is connected to the external flash memory. Pressing this button forces USB boot mode so that the
board shows up as a USB mass storage device.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Addressable_WS2812_LED_Data_Out.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_External_Flash_Memory.jpg

Reset Button

As explained earlier, there is a reset button to reset the RP2040. This adds the option of forcing the RP2040 into
bootloader mode without needing to unplug/replug the board back into your USB port. To keep the board size at a
minimum, the buttons are not labeled. To distinguish between the two buttons, just remember that the reset button
is on the same side of the board as the reset pin.

SWD Pins

For advanced users, there are two pins (i.e. D for data/SWDIO and C for clock/SWCLK) on the back broken out for
SWD programming on the back of the board. You'll need to solder wire to connect to these pins.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Boot_Button.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_Reset_Button.jpg

Board Dimensions

The board measures 1.3" x 0.7". Keep in mind that the USB-C connector is not flush with the board and will
protude about 0.05" from the edge of the board. Not included in the image below is the PCB thickness, which is
0.8mm. This is thinner than a majority of PCBs used for SparkFun original designs.

Hardware Hookup
Header pins were left off the Pro Micro RP2040 to allow users the flexibility of connecting any type of 0.1" header
to the board. For temporary connections to the I/O pins, you could use IC hooks to test out the pins. However,
you'll need to solder headers or wires of your choice to the board for a secure connection. For advanced users,
you could also design a PCB to take advantage of the castellated edges for a lower profile. Here are a few tutorials
to connect to the pads depending on your personal preference.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/17717-SparkFun_Pro_Micro_RP2040_SWD_Pins.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/SparkFun_Pro_Micro_RP2040_Board_Dimensions.png
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/how-to-solder-castellated-mounting-holes/all#introduction
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

How to Solder: Through-Hole Soldering
SEPTEMBER 19, 2013
This tutorial covers everything you need to know about through-hole soldering.

Working with Wire
FEBRUARY 8, 2013
How to strip, crimp, and work with wire.

How to Solder: Castellated Mounting Holes
MAY 12, 2015
Tutorial showing how to solder castellated holes (or castellations). This might
come in handy if you need to solder a module or PCB to another PCB. These
castellations are becoming popular with integrated WiFi and Bluetooth modules.

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/working-with-wire
https://learn.sparkfun.com/tutorials/how-to-solder-castellated-mounting-holes

Note: For advanced users taking advantage of the castellated edges, you can design a board with the Qwiic
Pro Micro Eagle footprint.

GITHUB SPARKFUN EAGLE LIBRARY: SPARKFUN-BOARDS.LBR

In order to power and upload to the board, you will simply need a USB C cable connected to your computer.

Connecting to GPIO

There a few methods of connecting to the GPIO. For a temporary connection when prototyping, you can use IC
hooks to connect your circuit to a breadboard. Below is an example of a basic 5mm LED connected to a 330Ω
current limiting resistor on a breadboard.

For a secure connection to the Pro Micro RP2040's GPIO, it is recommended to solder header pins. If you
designed the board using the footprint, you can also solder the board using the castellated headers. In this case,
two 1x12 male header pins are being soldered to the board with the help of a breadboard.

https://github.com/sparkfun/SparkFun-Eagle-Libraries
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Raspberry_Pi_Programming_Pro_Micro_RP2040.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_IC_Hooks_LED_Breadboard.jpg
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Soldering_Headers.jpg

While originally intended to connect Qwiic-enabled devices, you can also use the SDA and SCL pins as a quick,
visible test to see if the board is working. In this case, the SCL pin was used as a GPIO pin. Similar to the circuit
with the IC hooks, the pin was connected to a basic 5mm LED and a 330Ω current limiting resistor on a
breadboard.

Qwiic Enabled Device

You can also easily connect a Qwiic enabled device to the Qwiic connector. Below is an example of the Qwiic
VL53L1X distance sensor and Qwiic Micro OLED connected to the Qwiic Pro Micro.

UF2 Bootloader
The Pro Micro 2040 is easy to program, thanks the UF2 bootloader. With this bootloader, the board shows up on
your computer as a USB storage device without having to install drivers for Windows 10, Mac, and Linux!

What is UF2?

UF2 stands for USB Flashing Format, which was developed by Microsoft for PXT (now known as MakeCode) for
flashing microcontrollers over the Mass Storage Class (MSC), just like a removable flash drive. The file format is
unique, so unfortunately, you cannot simply drag and drop a compiled binary or hex file onto the board. Instead,
the format of the file has extra information to tell the processor where the data goes, in addition to the data itself.
For more information about UF2, you can read more from the MakeCode blog, as well as the UF2 file format
specification.

Software Overview
There are two methods of programming the RP2040. You can use MicroPython or C/C++ depending your personal
preference. The documentation is written for the Raspberry Pi's Pico development board but will apply for any
board with the RP2040. Just make sure to adjust the pin definition depending on what GPIO is broken out.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Breadboard_LED.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Qwiic_MicroOLED_Distance_Sensor.jpg
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://www.raspberrypi.org/documentation/pico/getting-started/

GETTING STARTED WITH THE RASPBERRY PI PICO

Examples (MicroPython)
The Raspberry Pi foundation has provided the necessary tools, documentation, and examples to get started with
the RP2040. If you haven't already, check out the documentation on the Pico. We'll use this as a reference when
using the chip on other development boards to fit your needs in this tutorial.

RASPBERRY PI: PICO PYTHON SDK (PDF)

We'll be using the MicroPython examples from this repo using Thonny IDE.

GITHUB: RASPBERRYPI/PICO-MICROPYTHON-EXAMPLES

Installing MicroPython on the RP2040

Note: Interested in going further? The Raspberry Pi Foundation also released a book to get started with the
Pico's RP2040: "Get Started with MicroPython on Raspberry Pi Pico."

To install MicroPython on the RP2040, you will need to download the firmware from Raspberry Pi. Click below to
head to the Raspberry Pi Foundation's MicroPython UF2 File for the RP2040. Click on the tab for the "Getting
started MicroPython" and the button for Download UF2 File.

CLICK TO DOWNLOAD THE MICROPYTHON UF2 FILE

Press and hold the boot button down with one hand.

Get Started with MicroPython on Raspberry Pi
Pico
 BOK-17835

https://www.raspberrypi.org/documentation/pico/getting-started/
https://datasheets.raspberrypi.org/pico/sdk/pico_python_sdk.pdf
https://github.com/raspberrypi/pico-micropython-examples
https://www.raspberrypi.org/documentation/pico/getting-started/
https://www.sparkfun.com/products/17835
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/17835

Press the reset button momentarily.

Release the boot button. The board should appear as a removable drive called RPI-RP2.

Draw and drop the UF2 file into the "removable drive". The board will automatically reboot. Below is an image
highlighting the UF2 file being moved to a the removeable drive on a Raspberry Pi.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Boot.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Boot_Reset.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Release_Reset.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Release_Boot_Button.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Raspberry_PiRP2040_Drag_and_Drop_UF2.jpg

Configuring Thonny IDE

Note: If you are using a Raspberry Pi, make sure that you are using the latest Raspberry Pi image. Enter the
following command in the LXTerminal to download and install the the latest packages. The && combines the
two commands into a single line and the -y answers "yes" to any prompts.

sudo apt update && sudo apt full-upgrade -y

Check to make sure that you are using Thonny v3.3.3 and above. If you are using a Raspberry Pi, type the
following command to check the version:

thonny -v

You should get a result similar to the output below. If you have a version that is equal or higher, you should be
good to go!

INFO thonny:Thonny version: 3.3.3

If you are using a different operating system, you can also download the Thonny IDE.

Open Thonny up from the start menu: Raspberry Pi Start Menu > Programming > Thonny Python IDE

Set Thonny's interpreter for the RP2040. The "Raspberry Pi Pico" will work for the RP2040. Head to the menu and
select: Run > Select Interpreter....

https://thonny.org/
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Open_Thonny_IDE.jpg

This will open a new window for the Thonny options. In the Interpreter tab, select MicroPython (Raspberry Pi
Pico) as the interpreter.

Note: You can also click on the bottom right to Configure Interpreter... and follow the same steps outlined
above.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_Select_Python_Interpreter.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_MicroPython_Interpreter.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_Shortcut_Select_Python_Interpreter.jpg

In the same window, make sure to select the option to have Thonny automatically detect the COM port for the
board: Port > < Try to detect port automatically >

Note: If you are on Linux based OS like the Raspberry Pi, the COM port may show up as tty(AMA0
(/dev/ttyAMA0) .

Hello World!

To check if this is working open the Thonny IDE, type the following into the editor. Feel free to adjust the message
to whatever you prefer.

print("Hello world!")

Hit the "Run current script" button. In the Shell, you will see the following output. Sweet!

>>> %Run -c %EDITOR_CONTENT
Hello world!

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_Select_COM_Port.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_Hello_World.jpg

Note: To save the file and have it run every time the board is powered up, simply select File > Save As...
from the menu.

When a window pops up, select Raspberry Pi Pico.

Then save the file as main.py

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_Run_on_Startup.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_Run_on_Startup_Select_Pico.jpg

Just make sure to save any code that was edited on your computer (e.g. Save as... > This computer) before
closing Thonny.

Note: If you are using a terminal window and REPL, you will need to type the functions into the terminal
window. While you can copy and paste, the terminal window will not recognize indents for loops or custom
defined subroutines. As a result, the pasted code will not be interpreted correctly by REPL. You'll want to
make sure that you are using the Thonny editor to avoid this error.

Blink

If you have the MicroPython examples saved, head to the following folder in your downloads .../pico-
micropython-examples/blink/blink.py . Your code should look like the following. Of course, you can also copy
and paste the code provided after the next paragraph as well.

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_Run_on_Startup_Main_Python_File.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Thonny_RP2040_Save_As_This_Computer.jpg

Once you open it in Thonny, adjust the pin number to the GPIO that the LED is connected to. Since we are using
the example that was written specifically for the Pico as opposed to the Pro Micro RP2040, we'll need to adjust the
pin. In this case, we'll use the RP2040's GPIO17 that is connected to the Qwiic connector so that we do not have
to solder pins to the board. This is assuming that we are connecting a current limiting resistor and an LED between
the GPIO17 and GND.

========== DESCRIPTION==========
The following code was originally written by
the Raspberry Pi Foundation. You can find this
example on GitHub.

https://github.com/raspberrypi/pico-micropython-examples/blob/master/blink/blink.py

Note that the GPIO for the LED was adjusted
for the Pro Micro RP2040. Make sure to use
a current limiting resistor with the LED.

from machine import Pin, Timer

led = Pin(17, Pin.OUT)
tim = Timer()
def tick(timer):
 global led
 led.toggle()

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

Hit the "Run current script" button. Once the code runs, you will see the LED blink. If you want the board to run
blink every time the board is powered up, just follow the note provided at the end the previous example.

WS2812

If you have the MicroPython examples saved, head to the following folder in your downloads .../pico-
micropython-examples/pio/neopixel_ring/neopixel_ring.py . Your code should look like the following. Of
course, you can also copy and paste the code provided after the next paragraph as well.

Once you open it in Thonny, adjust the pin number to the GPIO that the LED is connected to for PIN_NUM . Since
we are using the example that was written specifically for the Pico as opposed to the Pro Micro 2040, we'll need to
adjust the pin. In this case, we'll use the RP2040's GPIO25 that is connected to the WS2812. We will also adjust
the NUM_LEDs to 1 .

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_Blink.jpg

========== DESCRIPTION==========
Example using PIO to drive a set of WS2812 LEDs.

The following code was originally written by
the Raspberry Pi Foundation. You can find this
example on GitHub.

https://github.com/raspberrypi/pico-micropython-examples/blob/master/pio/neopixel_ring/neop
ixel_ring.py

Note that the 'NUM_LEDs' was adjusted to 1. Also
the GPIO for the addressable WS2812 RGB LED called
`PIN_NUM` was adjusted for the Pro Micro RP2040.

import array, time
from machine import Pin
import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS = 1
PIN_NUM = 25
brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_
thresh=24)
def ws2812():
 T1 = 2
 T2 = 5
 T3 = 3
 wrap_target()
 label("bitloop")
 out(x, 1) .side(0) [T3 - 1]
 jmp(not_x, "do_zero") .side(1) [T1 - 1]
 jmp("bitloop") .side(1) [T2 - 1]
 label("do_zero")
 nop() .side(0) [T2 - 1]
 wrap()

Create the StateMachine with the ws2812 program, outputting on pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])

def pixels_show():
 dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
 for i,c in enumerate(ar):
 r = int(((c >> 8) & 0xFF) * brightness)

 g = int(((c >> 16) & 0xFF) * brightness)
 b = int((c & 0xFF) * brightness)
 dimmer_ar[i] = (g<<16) + (r<<8) + b
 sm.put(dimmer_ar, 8)
 time.sleep_ms(10)

def pixels_set(i, color):
 ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels_fill(color):
 for i in range(len(ar)):
 pixels_set(i, color)

def color_chase(color, wait):
 for i in range(NUM_LEDS):
 pixels_set(i, color)
 time.sleep(wait)
 pixels_show()
 time.sleep(0.2)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(NUM_LEDS):
 rc_index = (i * 256 // NUM_LEDS) + j
 pixels_set(i, wheel(rc_index & 255))
 pixels_show()
 time.sleep(wait)

BLACK = (0, 0, 0)
RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
WHITE = (255, 255, 255)
COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)

print("fills")
for color in COLORS:

 pixels_fill(color)
 pixels_show()
 time.sleep(0.2)

print("chases")
for color in COLORS:
 color_chase(color, 0.01)

while True:
 print("rainbow")
 rainbow_cycle(0)

Hit the "Run current script" button. Once the code runs, it will display each color at "0.2" brightness. The LED will
then animate. Since there is only one LED attached, it will look like it will be blinking through the colors. Once the
board jumps into the while loop, the LED will begin cycling between colors smoothly. Remember, you can have the
board run the example every time the board is powered up by following the note provided in an earlier example.

If you are looking to simplify the code, you can also use the library written for the WS2812. This saves some of the
functions in a separate file. Just make sure to adjust the GPIO to connect to the WS2812(s) and the number of
LEDs.

GITHUB: PICO_PYTHON_WS2812B LIBRARY

Resources and Going Further
For more information, check out the resources below:

Schematic (PDF)
Eagle Files (ZIP)
Board Dimensions (PNG)
Graphical Datasheet (PDF)
RP2040 Datasheet (PDF) (31.2 MB)
Raspberry Pi Pico Datasheet (PDF) (16.5MB) - An RP2040-based microcontroller board
Getting Started with Raspberry Pi Pico (PDF) (32.9MB) - C/C++ development with Raspberry Pi Pico and
other RP2040-based microcontroller boards
Raspberry Pi Pico C/C++ SDK (PDF) (2.14MB) - Libraries and tools for C/C++ development on RP2040
microcontrollers
Raspberry Pi Pico Python SDK (PDF) (2.66MB) - A MicroPython environment for RP2040 microcontrollers
RP2040 Informational Page
GitHub Repo

https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/Pro_Micro_RP2040_WS2812_RGB_Rainbow.gif
https://github.com/benevpi/pico_python_ws2812b
https://cdn.sparkfun.com/assets/4/a/6/d/6/SparkFun_Pro_Micro_RP2040_Schematic.pdf
https://cdn.sparkfun.com/assets/3/5/d/0/3/SparkFun_ProMicro-RP2040.zip
https://cdn.sparkfun.com/assets/learn_tutorials/1/5/6/0/SparkFun_Pro_Micro_RP2040_Board_Dimensions.png
https://cdn.sparkfun.com/assets/e/2/7/6/b/ProMicroRP2040_Graphical_Datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://www.sparkfun.com/rp2040
https://github.com/sparkfun/SparkFun_Pro_Micro-RP2040

