# 74AUP1G07-Q100

# Low-power buffer with open-drain output

Rev. 2 — 20 April 2021

**Product data sheet** 

### 1. General description

The 74AUP1G07-Q100 provides the single non-inverting buffer with open-drain output. The output of the device is an open drain and can be connected to other open-drain outputs to implement active-LOW wired-OR or active-HIGH wired-AND functions.

Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire  $V_{CC}$  range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire  $V_{CC}$  range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using  $I_{OFF}$ . The  $I_{OFF}$  circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

#### 2. Features and benefits

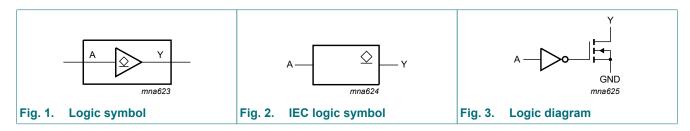
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
  - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 0.8 V to 3.6 V
- · High noise immunity
- Complies with JEDEC standards:
  - JESD8-12 (0.8 V to 1.3 V)
  - JESD8-11 (0.9 V to 1.65 V)
  - JESD8-7 (1.2 V to 1.95 V)
  - JESD8-5 (1.8 V to 2.7 V)
  - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
  - HBM: ANSI/ESDA/JEDEC JS-001 Class 3A exceeds 5000 V
  - MM: JESD22-A115-A exceeds 200 V
  - MIL-STD-883, method 3015 Class 3A exceeds 5000 V
- Low static power consumption; I<sub>CC</sub> = 0.9 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V<sub>CC</sub>
- I<sub>OFF</sub> circuitry provides partial Power-down mode operation

# 3. Ordering information

#### **Table 1. Ordering information**

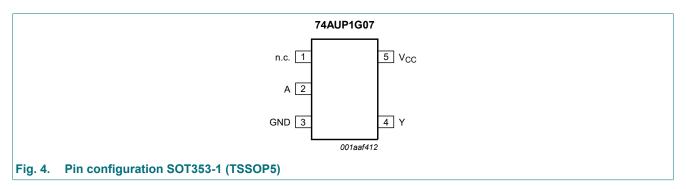
| Type number      | Package           |        |                                                                           |          |
|------------------|-------------------|--------|---------------------------------------------------------------------------|----------|
|                  | Temperature range | Name   | Description                                                               | Version  |
| 74AUP1G07GW-Q100 | -40 °C to +125 °C | TSSOP5 | plastic thin shrink small outline package;<br>5 leads; body width 1.25 mm | SOT353-1 |




# 4. Marking

#### Table 2. Marking

| Type number      | Marking code[1] |
|------------------|-----------------|
| 74AUP1G07GW-Q100 | pS              |


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

# 5. Functional diagram



# 6. Pinning information

### 6.1. Pinning



# 6.2. Pin description

Table 3. Pin description

| Symbol | Pin | Description    |
|--------|-----|----------------|
| n.c.   | 1   | not connected  |
| Α      | 2   | data input     |
| GND    | 3   | ground (0 V)   |
| Υ      | 4   | data output    |
| Vcc    | 5   | supply voltage |

# 7. Functional description

#### **Table 4. Function table**

H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF state.

| Input | Output |
|-------|--------|
| A     | Υ      |
| L     | L      |
| Н     | Ζ      |

# 8. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                               | Min  | Max  | Unit |
|------------------|-------------------------|--------------------------------------------------------------------------|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                                                          | -0.5 | +4.6 | V    |
| I <sub>IK</sub>  | input clamping current  | V <sub>I</sub> < 0 V                                                     | -50  | -    | mA   |
| VI               | input voltage           | [1]                                                                      | -0.5 | +4.6 | V    |
| I <sub>OK</sub>  | output clamping current | V <sub>O</sub> < 0 V                                                     | -50  | -    | mA   |
| Vo               | output voltage          | Active mode and Power-down mode [1]                                      | -0.5 | +4.6 | V    |
| Io               | output current          | $V_O = 0 V \text{ to } V_{CC}$                                           | -    | 20   | mA   |
| I <sub>CC</sub>  | supply current          |                                                                          | -    | 50   | mA   |
| $I_{GND}$        | ground current          |                                                                          | -50  | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                          | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$ [2] | -    | 250  | mW   |

<sup>[1]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# 9. Recommended operating conditions

Table 6. Recommended operating conditions

| Symbol           | Parameter                           | Conditions                       | Min | Max  | Unit |
|------------------|-------------------------------------|----------------------------------|-----|------|------|
| V <sub>CC</sub>  | supply voltage                      |                                  | 0.8 | 3.6  | V    |
| VI               | input voltage                       |                                  | 0   | 3.6  | V    |
| Vo               | output voltage                      | Active mode and Power-down mode  | 0   | 3.6  | V    |
| T <sub>amb</sub> | ambient temperature                 |                                  | -40 | +125 | °C   |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 0.8 V to 3.6 V | 0   | 200  | ns/V |

<sup>[2]</sup> For SOT353-1 (TSSOP5) package: Ptot derates linearly with 3.3 mW/K above 74 °C.

# 10. Static characteristics

#### **Table 7. Static characteristics**

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                                                                     | Parameter                                                                                                | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min                 | Тур  | Max                 | Unit |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|---------------------|------|
| T <sub>amb</sub> = 2                                                       | 5 °C                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      | -1                  |      |
| V <sub>IH</sub>                                                            | HIGH-level input voltage                                                                                 | V <sub>CC</sub> = 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70V <sub>CC</sub> | -    | -                   | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.65V <sub>CC</sub> | -    | -                   | V    |
| T <sub>amb</sub> = 25 VIH VIL VOL OFF ΔIOFF CC CI CO T <sub>amb</sub> = -4 |                                                                                                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6                 | -    | -                   | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                 | -    |                     | V    |
| V <sub>IL</sub> I                                                          | LOW-level input voltage                                                                                  | V <sub>CC</sub> = 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -    | 0.30V <sub>CC</sub> | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | -    | 0.35V <sub>CC</sub> | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.7                 | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.9                 | V    |
| V <sub>OL</sub>                                                            | LOW-level output voltage                                                                                 | $V_I = V_{IH}$ or $V_{IL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |                     |      |
|                                                                            |                                                                                                          | I <sub>O</sub> = 20 μA; V <sub>CC</sub> = 0.8 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                   | -    | 0.1                 | V    |
|                                                                            |                                                                                                          | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.3V <sub>CC</sub>  | V    |
|                                                                            | $ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | 0.31 | V                   |      |
|                                                                            |                                                                                                          | $\begin{array}{c} V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 1.1 \ W_{CC} = 1.1 \ V \\ V_{CC} = 1.1 \ W_{CC} = 1.1 \ V \\ V_{CC} = 1.1 \ W_{CC} = 1.4 \ V \\ V_{CC} = 1.9 \ W_{CC} = 1.4 \ V \\ V_{CC} = 1.9 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ W_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC} = 1.05 \ V \\ V_{CC} = 1.0 \ V_{CC}$ | 0.31                | V    |                     |      |
|                                                                            | $I_O$ = 2.3 mA; $V_{CC}$ = 2.3 V<br>$I_O$ = 3.1 mA; $V_{CC}$ = 2.3 V<br>$I_O$ = 2.7 mA; $V_{CC}$ = 3.0 V | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | 0.31 | V                   |      |
|                                                                            |                                                                                                          | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.44                | V    |
|                                                                            |                                                                                                          | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.31                | V    |
|                                                                            |                                                                                                          | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.44                | V    |
| I <sub>I</sub>                                                             | input leakage current                                                                                    | V <sub>I</sub> = GND to 3.6 V; V <sub>CC</sub> = 0 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   | -    | ±0.1                | μΑ   |
| l <sub>OZ</sub>                                                            | OFF-state output current                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | -    | ±0.1                | μΑ   |
| I <sub>OFF</sub>                                                           | power-off leakage current                                                                                | $V_I$ or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   | -    | ±0.2                | μΑ   |
| Δl <sub>OFF</sub>                                                          | additional power-off<br>leakage current                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | -    | ±0.2                | μΑ   |
| I <sub>CC</sub>                                                            | supply current                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | -    | 0.5                 | μΑ   |
| ΔI <sub>CC</sub>                                                           | additional supply current                                                                                | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | -    | 40                  | μΑ   |
| Cı                                                                         | input capacitance                                                                                        | $V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_I = \text{GND or } V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | 0.8  | -                   | pF   |
| Co                                                                         | output capacitance                                                                                       | output enabled; V <sub>O</sub> = GND; V <sub>CC</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | 1.7  | -                   | pF   |
|                                                                            |                                                                                                          | output disabled; V <sub>O</sub> = GND; V <sub>CC</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                   | 1.1  | -                   | pF   |
| T <sub>amb</sub> = -4                                                      | 40 °C to +85 °C                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |                     |      |
| V <sub>IH</sub>                                                            | HIGH-level input voltage                                                                                 | V <sub>CC</sub> = 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70V <sub>CC</sub> | -    | -                   | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.65V <sub>CC</sub> | -    | -                   | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6                 | -    | -                   | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                 | -    | -                   | V    |
| V <sub>IL</sub>                                                            | LOW-level input voltage                                                                                  | V <sub>CC</sub> = 0.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -    | 0.30V <sub>CC</sub> | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | -    | 0.35V <sub>CC</sub> | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.7                 | V    |
|                                                                            |                                                                                                          | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | -    | 0.9                 | V    |

| Symbol                | Parameter                               | Conditions                                                                                         | Min                 | Тур | Max                 | Unit |
|-----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|-----|---------------------|------|
| V <sub>OL</sub>       | LOW-level output voltage                | $V_I = V_{IH}$ or $V_{IL}$                                                                         |                     |     |                     |      |
| I                     |                                         | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                      | -                   | -   | 0.1                 | V    |
|                       |                                         | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                   | -                   | -   | 0.3V <sub>CC</sub>  | V    |
|                       |                                         | I <sub>O</sub> = 1.7 mA; V <sub>CC</sub> = 1.4 V                                                   | -                   | -   | 0.37                | V    |
|                       |                                         | I <sub>O</sub> = 1.9 mA; V <sub>CC</sub> = 1.65 V                                                  | -                   | -   | 0.35                | V    |
|                       |                                         | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                     | -                   | -   | 0.33                | V    |
|                       |                                         | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                   | -                   | -   | 0.45                | V    |
|                       |                                         | $I_{O}$ = 2.7 mA; $V_{CC}$ = 3.0 V                                                                 | -                   | -   | 0.33                | V    |
|                       |                                         | $I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                     | -                   | -   | 0.45                | V    |
| I <sub>I</sub>        | input leakage current                   | $V_{I}$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                    | -                   | -   | ±0.5                | μΑ   |
| l <sub>OZ</sub>       | OFF-state output current                | $V_I = V_{IH}$ ; $V_O = 0 \text{ V to } 3.6 \text{ V}$ ; $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$  | -                   | -   | ±0.5                | μA   |
| I <sub>OFF</sub>      | power-off leakage current               | $V_I$ or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                      | -                   | -   | ±0.5                | μΑ   |
| Δl <sub>OFF</sub>     | additional power-off<br>leakage current | V <sub>I</sub> or V <sub>O</sub> = 0 V to 3.6 V;<br>V <sub>CC</sub> = 0 V to 0.2 V                 | -                   | -   | ±0.6                | μΑ   |
| I <sub>CC</sub>       | supply current                          | $V_I$ = GND or $V_{CC}$ ; $I_O$ = 0 A;<br>$V_{CC}$ = 0.8 V to 3.6 V                                | -                   | -   | 0.9                 | μA   |
| $\Delta I_{CC}$       | additional supply current               | $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$                          | -                   | -   | 50                  | μΑ   |
| T <sub>amb</sub> = -4 | 40 °C to +125 °C                        |                                                                                                    |                     |     |                     | •    |
| V <sub>IH</sub>       | HIGH-level input voltage                | V <sub>CC</sub> = 0.8 V                                                                            | 0.75V <sub>CC</sub> | -   | -                   | V    |
|                       |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                  | 0.70V <sub>CC</sub> | -   | -                   | V    |
|                       |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                   | 1.6                 | -   | -                   | V    |
|                       |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | 2.0                 | -   | -                   | V    |
| V <sub>IL</sub>       | LOW-level input voltage                 | V <sub>CC</sub> = 0.8 V                                                                            | -                   | -   | 0.25V <sub>CC</sub> | V    |
|                       |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                  | -                   | -   | 0.30V <sub>CC</sub> | V    |
|                       |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                   | -                   | -   | 0.7                 | V    |
|                       |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | -                   | -   | 0.9                 | V    |
| V <sub>OL</sub>       | LOW-level output voltage                | $V_I = V_{IH}$ or $V_{IL}$                                                                         |                     |     |                     |      |
|                       |                                         | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                      | -                   | -   | 0.11                | V    |
|                       |                                         | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                   | -                   | -   | 0.33V <sub>CC</sub> | V    |
|                       |                                         | $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                     | -                   | -   | 0.41                | V    |
|                       |                                         | $I_{O}$ = 1.9 mA; $V_{CC}$ = 1.65 V                                                                | -                   | -   | 0.39                | V    |
|                       |                                         | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                     | -                   | -   | 0.36                | V    |
|                       |                                         | $I_{O}$ = 3.1 mA; $V_{CC}$ = 2.3 V                                                                 | -                   | -   | 0.50                | V    |
|                       |                                         | $I_{O}$ = 2.7 mA; $V_{CC}$ = 3.0 V                                                                 | -                   | -   | 0.36                | V    |
|                       |                                         | $I_{O}$ = 4.0 mA; $V_{CC}$ = 3.0 V                                                                 | -                   | -   | 0.50                | V    |
| l <sub>l</sub>        | input leakage current                   | $V_{I}$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                    | -                   | -   | ±0.75               | μΑ   |
| l <sub>OZ</sub>       | OFF-state output current                | $V_I = V_{IH}$ ; $V_O = 0 \text{ V to } 3.6 \text{ V}$ ; $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$  | -                   | -   | ±0.75               | μΑ   |
| I <sub>OFF</sub>      | power-off leakage current               | $V_{I}$ or $V_{O} = 0 V$ to 3.6 V; $V_{CC} = 0 V$                                                  | -                   | -   | ±0.75               | μΑ   |
| Δl <sub>OFF</sub>     | additional power-off leakage current    | $V_1 \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 0.2 \text{ V}$ | -                   | -   | ±0.75               | μA   |
| I <sub>CC</sub>       | supply current                          | $V_I$ = GND or $V_{CC}$ ; $I_O$ = 0 A;<br>$V_{CC}$ = 0.8 V to 3.6 V                                | -                   | -   | 1.4                 | μΑ   |
| ΔI <sub>CC</sub>      | additional supply current               | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$                          | -                   | -   | 75                  | μΑ   |

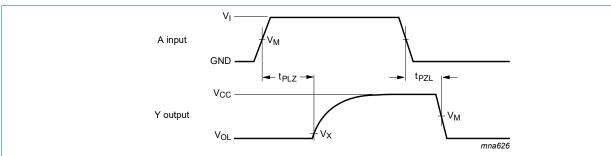
# 11. Dynamic characteristics

#### **Table 8. Dynamic characteristics**

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

| Symbol               | I Parameter Conditions |                                    |     | 25 °C  |      | -40 °C to<br>+85 °C |      | -40 °C to<br>+125 °C |      | Unit |
|----------------------|------------------------|------------------------------------|-----|--------|------|---------------------|------|----------------------|------|------|
|                      |                        |                                    | Min | Typ[1] | Max  | Min                 | Max  | Min                  | Max  |      |
| C <sub>L</sub> = 5 p | F                      |                                    |     |        |      |                     |      |                      |      |      |
| t <sub>pd</sub>      | propagation            | A to Y; see <u>Fig. 5</u> [2]      |     |        |      |                     |      |                      |      |      |
|                      | delay                  | V <sub>CC</sub> = 0.8 V            | -   | 11.6   | -    | -                   | -    | -                    | -    | ns   |
|                      |                        | V <sub>CC</sub> = 1.1 V to 1.3 V   | 2.1 | 4.1    | 7.5  | 1.7                 | 9.1  | 1.7                  | 10.0 | ns   |
|                      |                        | V <sub>CC</sub> = 1.4 V to 1.6 V   | 1.6 | 3.0    | 5.1  | 1.3                 | 6.1  | 1.3                  | 6.7  | ns   |
|                      |                        | V <sub>CC</sub> = 1.65 V to 1.95 V | 1.6 | 2.7    | 4.0  | 1.2                 | 5.0  | 1.2                  | 5.5  | ns   |
|                      |                        | V <sub>CC</sub> = 2.3 V to 2.7 V   | 1.1 | 2.1    | 3.2  | 0.9                 | 4.0  | 0.9                  | 4.4  | ns   |
|                      |                        | V <sub>CC</sub> = 3.0 V to 3.6 V   | 1.4 | 2.2    | 2.8  | 1.1                 | 3.3  | 1.1                  | 3.6  | ns   |
| C <sub>L</sub> = 10  | pF                     |                                    |     |        |      |                     |      |                      |      | •    |
| t <sub>pd</sub>      | propagation            | A to Y; see <u>Fig. 5</u> [2]      |     |        |      |                     |      |                      |      |      |
|                      | delay                  | V <sub>CC</sub> = 0.8 V            | -   | 14.7   | -    | -                   | -    | -                    | -    | ns   |
|                      |                        | V <sub>CC</sub> = 1.1 V to 1.3 V   | 3.0 | 5.1    | 9.0  | 2.4                 | 11.2 | 2.4                  | 12.3 | ns   |
|                      |                        | V <sub>CC</sub> = 1.4 V to 1.6 V   | 2.3 | 3.8    | 6.1  | 2.0                 | 7.4  | 2.0                  | 8.1  | ns   |
|                      |                        | V <sub>CC</sub> = 1.65 V to 1.95 V | 2.4 | 3.6    | 4.8  | 1.8                 | 6.1  | 1.8                  | 6.7  | ns   |
|                      |                        | V <sub>CC</sub> = 2.3 V to 2.7 V   | 1.7 | 2.8    | 3.8  | 1.3                 | 4.8  | 1.3                  | 5.3  | ns   |
|                      |                        | V <sub>CC</sub> = 3.0 V to 3.6 V   | 2.2 | 3.1    | 4.2  | 1.6                 | 4.5  | 1.6                  | 5.0  | ns   |
| C <sub>L</sub> = 15  | pF                     |                                    |     |        |      |                     |      |                      |      | _    |
| t <sub>pd</sub>      | propagation            | A to Y; see <u>Fig. 5</u> [2]      |     |        |      |                     |      |                      |      |      |
|                      | delay                  | V <sub>CC</sub> = 0.8 V            | -   | 17.7   | -    | -                   | -    | -                    | -    | ns   |
|                      |                        | V <sub>CC</sub> = 1.1 V to 1.3 V   | 3.5 | 6.1    | 10.4 | 3.2                 | 13.1 | 3.2                  | 14.5 | ns   |
|                      |                        | V <sub>CC</sub> = 1.4 V to 1.6 V   | 3.0 | 4.5    | 6.8  | 2.6                 | 8.6  | 2.6                  | 9.4  | ns   |
|                      |                        | V <sub>CC</sub> = 1.65 V to 1.95 V | 2.8 | 4.4    | 6.7  | 2.2                 | 7.8  | 2.2                  | 8.6  | ns   |
|                      |                        | V <sub>CC</sub> = 2.3 V to 2.7 V   | 2.4 | 3.4    | 4.5  | 1.9                 | 5.3  | 1.9                  | 5.8  | ns   |
|                      |                        | V <sub>CC</sub> = 3.0 V to 3.6 V   | 2.2 | 4.0    | 5.7  | 1.9                 | 6.1  | 1.9                  | 6.7  | ns   |
| C <sub>L</sub> = 30  | pF                     |                                    |     |        |      |                     |      |                      |      |      |
| t <sub>pd</sub>      | propagation            | A to Y; see <u>Fig. 5</u> [2]      |     |        |      |                     |      |                      |      |      |
|                      | delay                  | V <sub>CC</sub> = 0.8 V            | -   | 24.6   | -    | -                   | -    | -                    | -    | ns   |
|                      |                        | V <sub>CC</sub> = 1.1 V to 1.3 V   | 4.8 | 9.0    | 15.6 | 4.3                 | 18.8 | 4.3                  | 20.7 | ns   |
|                      |                        | V <sub>CC</sub> = 1.4 V to 1.6 V   | 4.1 | 6.7    | 9.4  | 3.7                 | 11.8 | 3.7                  | 13.0 | ns   |
|                      |                        | V <sub>CC</sub> = 1.65 V to 1.95 V | 3.8 | 6.8    | 9.7  | 3.2                 | 11.0 | 3.2                  | 12.1 | ns   |
|                      |                        | V <sub>CC</sub> = 2.3 V to 2.7 V   | 3.7 | 5.2    | 6.7  | 3.0                 | 7.1  | 3.0                  | 7.8  | ns   |
|                      |                        | V <sub>CC</sub> = 3.0 V to 3.6 V   | 3.6 | 6.4    | 9.7  | 2.8                 | 10.4 | 2.8                  | 11.4 | ns   |

| Symbol               | Parameter                           | Conditions                                             | 25 °C |        | -40 °C to<br>+85 °C |     | -40 °C to<br>+125 °C |     | Unit |    |
|----------------------|-------------------------------------|--------------------------------------------------------|-------|--------|---------------------|-----|----------------------|-----|------|----|
|                      |                                     |                                                        | Min   | Typ[1] | Max                 | Min | Max                  | Min | Max  |    |
| C <sub>L</sub> = 5 p | F, 10 pF, 15 pF                     | and 30 pF                                              |       |        |                     |     |                      |     |      |    |
| C <sub>PD</sub>      | power<br>dissipation<br>capacitance | $f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$ [3] |       |        |                     |     |                      |     |      |    |
|                      |                                     | V <sub>CC</sub> = 0.8 V                                | -     | 0.5    | -                   | -   | -                    | -   | -    | pF |
|                      |                                     | V <sub>CC</sub> = 1.1 V to 1.3 V                       | -     | 0.6    | -                   | -   | -                    | -   | -    | pF |
|                      |                                     | V <sub>CC</sub> = 1.4 V to 1.6 V                       | -     | 0.6    | -                   | -   | -                    | -   | -    | pF |
|                      |                                     | V <sub>CC</sub> = 1.65 V to 1.95 V                     | -     | 0.7    | -                   | -   | -                    | -   | -    | pF |
|                      |                                     | V <sub>CC</sub> = 2.3 V to 2.7 V                       | -     | 0.9    | -                   | -   | -                    | -   | -    | pF |
|                      |                                     | V <sub>CC</sub> = 3.0 V to 3.6 V                       | -     | 1.2    | -                   | -   | -                    | -   | -    | pF |


All typical values are measured at nominal V<sub>CC</sub>.

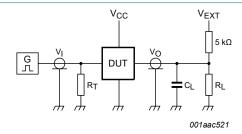
V<sub>CC</sub> = supply voltage in V;

N = number of inputs switching.

 <sup>[2]</sup> t<sub>pd</sub> is the same as t<sub>PZL</sub> and t<sub>PLZ</sub>.
 [3] C<sub>PD</sub> is used to determine the dynamic power dissipation (P<sub>D</sub> in μW).
 P<sub>D</sub> = C<sub>PD</sub> x V<sub>CC</sub><sup>2</sup> x f<sub>i</sub> x N where:
 f<sub>i</sub> = input frequency in MHz;

#### 11.1. Waveforms and test circuit




Measurement points are given in Table 9.

Logic level:  $V_{OL}$  is the typical output voltage level that occurs with the output load.

Fig. 5. The data input (A) to output (Y) propagation delays

**Table 9. Measurement points** 

| Supply voltage  | Input                 |                 |             | Output                |                          |  |
|-----------------|-----------------------|-----------------|-------------|-----------------------|--------------------------|--|
| V <sub>CC</sub> | V <sub>M</sub>        | V <sub>I</sub>  | $t_r = t_f$ | V <sub>M</sub>        | V <sub>X</sub>           |  |
| 0.8 V to 1.6 V  | 0.5 x V <sub>CC</sub> | V <sub>CC</sub> | ≤ 3.0 ns    | 0.5 x V <sub>CC</sub> | V <sub>OL</sub> + 0.1 V  |  |
| 1.65 V to 2.7 V | 0.5 x V <sub>CC</sub> | V <sub>CC</sub> | ≤ 3.0 ns    | 0.5 x V <sub>CC</sub> | V <sub>OL</sub> + 0.15 V |  |
| 3.0 V to 3.6 V  | 0.5 x V <sub>CC</sub> | V <sub>CC</sub> | ≤ 3.0 ns    | 0.5 x V <sub>CC</sub> | V <sub>OL</sub> + 0.3 V  |  |



Test data is given in Table 10.

Definitions for test circuit:

R<sub>L</sub> = Load resistance.

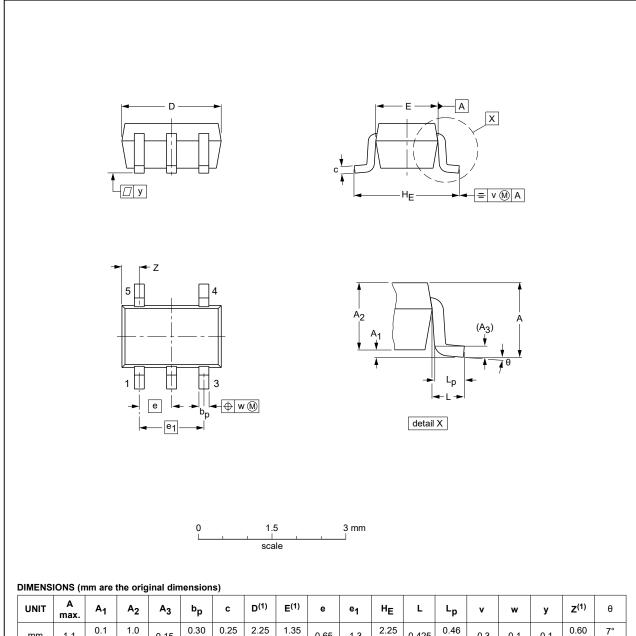
C<sub>L</sub> = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to the output impedance  $Z_0$  of the pulse generator.

V<sub>EXT</sub> = External voltage for measuring switching times.

Fig. 6. Test circuit for measuring switching times

#### Table 10. Test data


| Supply voltage  | voltage Load V <sub>EXT</sub> |                                  |                                                                                            |     |                                     |
|-----------------|-------------------------------|----------------------------------|--------------------------------------------------------------------------------------------|-----|-------------------------------------|
| V <sub>CC</sub> | CL                            | R <sub>L</sub> [1]               | t <sub>PLH</sub> , t <sub>PHL</sub> t <sub>PZH</sub> , t <sub>PHZ</sub> t <sub>PZL</sub> , |     | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| 0.8 V to 3.6 V  | 5 pF, 10 pF, 15 pF and 30 pF  | $5$ k $\Omega$ or $1$ M $\Omega$ | open                                                                                       | GND | 2 × V <sub>CC</sub>                 |

[1] For measuring enable and disable times,  $R_L = 5 \text{ k}\Omega$ . For measuring propagation delays, setup and hold times and pulse width,  $R_L = 1 \text{ M}\Omega$ .

# 12. Package outline

### TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp           | C            | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | HE          | L     | Lp           | v   | w   | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|------|--------------|--------------|------------------|------------------|------|----------------|-------------|-------|--------------|-----|-----|-----|------------------|----------|
| mm   | 1.1       | 0.1<br>0       | 1.0<br>0.8     | 0.15 | 0.30<br>0.15 | 0.25<br>0.08 | 2.25<br>1.85     | 1.35<br>1.15     | 0.65 | 1.3            | 2.25<br>2.0 | 0.425 | 0.46<br>0.21 | 0.3 | 0.1 | 0.1 | 0.60<br>0.15     | 7°<br>0° |

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                  |  |
|----------|-----|--------|----------|------------|------------|----------------------------------|--|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                       |  |
| SOT353-1 |     | MO-203 | SC-88A   |            |            | <del>-00-09-01</del><br>03-02-19 |  |

Fig. 7. Package outline SOT353-1 (TSSOP5)

# 13. Abbreviations

#### **Table 11. Abbreviations**

| Acronym | Description             |
|---------|-------------------------|
| DUT     | Device Under Test       |
| ESD     | ElectroStatic Discharge |
| НВМ     | Human Body Model        |
| MIL     | Military                |
| MM      | Machine Model           |

# 14. Revision history

#### Table 12. Revision history

| Document ID        | Release date | Data sheet status            | Change notice     | Supersedes                   |  |  |  |  |  |
|--------------------|--------------|------------------------------|-------------------|------------------------------|--|--|--|--|--|
| 74AUP1G07_Q100 v.2 | 20210420     | Product data sheet           | -                 | 74AUP1G07_Q100 v.1           |  |  |  |  |  |
| Modifications:     |              | Table 9: Table lay-out aligr | ned with Non-Auto | omotive data sheet 74AUP1G07 |  |  |  |  |  |
| 74AUP1G07_Q100 v.1 | 20190701     | Product data sheet           | -                 | -                            |  |  |  |  |  |

### 15. Legal information

#### **Data sheet status**

| Document status [1][2]         | Product<br>status [3] | Definition                                                                            |  |  |  |
|--------------------------------|-----------------------|---------------------------------------------------------------------------------------|--|--|--|
| Objective [short] data sheet   | Development           | This document contains data from the objective specification for product development. |  |  |  |
| Preliminary [short] data sheet | Qualification         | This document contains data from the preliminary specification.                       |  |  |  |
| Product [short]<br>data sheet  | Production            | This document contains the product specification.                                     |  |  |  |

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <a href="https://www.nexperia.com">https://www.nexperia.com</a>.

#### **Definitions**

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### **Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

11 / 12

# **Contents**

| 1. General description              | 1  |
|-------------------------------------|----|
| 2. Features and benefits            | 1  |
| 3. Ordering information             | 1  |
| 4. Marking                          | 2  |
| 5. Functional diagram               | 2  |
| 6. Pinning information              | 2  |
| 6.1. Pinning                        | 2  |
| 6.2. Pin description                | 2  |
| 7. Functional description           | 3  |
| 8. Limiting values                  | 3  |
| 9. Recommended operating conditions | 3  |
| 10. Static characteristics          | 4  |
| 11. Dynamic characteristics         | 6  |
| 11.1. Waveforms and test circuit    | 8  |
| 12. Package outline                 |    |
| 13. Abbreviations                   | 10 |
| 14. Revision history                |    |
| 15. Legal information               |    |
|                                     |    |

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 20 April 2021

<sup>©</sup> Nexperia B.V. 2021. All rights reserved