C4AE, Radial, 2 or 4 Leads, 450 – 1,100 VDC for DC Link

Overview

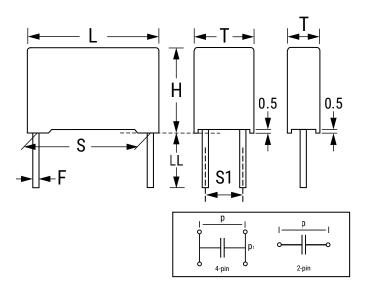
The C4AE capcitor is a polypropylene metallized film capacitor with a rectangular, plastic box-type design (white or grey in color) filled with resin, and uses 2 or 4 tinned copper wires.

Applications

Typical applications include DC filtering and energy storage.

Benefits

- · Self-healing
- Low loss
- · High ripple current
- · High capacitance density
- · High contact reliability
- · Suitable for high frequency applications



Part Number System

C4	A	E	Q	В	W	5270	A	3	N	J
Series	Туре	Application	Rated Voltage (VDC)	Case	Terminals Code	Capacitance Code (pF)	C-Spec	Lead Diameter (mm)	Size Code: B x H x L (mm)	Tolerance
C4 = MKP Power Capacitors	A = Box, wire terminals	E = DC link	G = 450 H = 600 J = 700 O = 900 Q = 1,100	B = Box, plastic case	U = 2 pins W = 4 pins	Digits two – four indicate the first three digits of the capacitance value. First digit indicates the number of zeros to be added.	A = Standard grade	1 = 0.8 3 = 1.2	W = 11 x 20 x 31.5 X = 13 x 25 x 31.5 Y = 14 x 28 x 31.5 1 = 19 x 29 x 31.5 2 = 22 x 37 x 31.5 F = 20 x 40 x 42 H = 24 x 44 x 42 J = 28 x 37 x 42 L = 30 x 45 x 42 M = 30 x 45 x 57.5 N = 35 x 50 x 57.5	J = 5% K = 10%

Dimensions - Millimeters

Size		S	S	1		Г		Н			L	L		F
Code	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance
W	27.5	±0.4	-	-	11	+0.3/-0.7	20	+0.2/-0.7	31.5	+0.5/-0.7	6	+0/-2	0.8	±0.05
Х	27.5	±0.4	-	-	13	+0.3/-0.7	25	+0.2/-0.7	31.5	+0.5/-0.7	6	+0/-2	0.8	±0.05
Υ	27.5	±0.4	-	-	14	+0.3/-0.7	28	+0.2/-0.7	31.5	+0.5/-0.7	6	+0/-2	0.8	±0.05
1	27.5	±0.4	-	-	19	+0.3/-0.7	29	+0.2/-0.7	31.5	+0.5/-0.7	6	+0/-2	0.8	±0.05
2	27.5	±0.4	-	-	22	+0.3/-0.7	37	+0.2/-0.7	31.5	+0.5/-0.7	6	+0/-2	0.8	±0.05
F	37.5	±0.4	5.1/10.2	±0.4	20	+0.4/-0.7	40	+0.2/-0.7	42	+0.6/-0.7	6	+0/-2	1.2	±0.05
Н	37.5	±0.4	10.2	±0.4	24	+0.4/-0.7	44	+0.2/-0.7	42	+0.6/-0.7	6	+0/-2	1.2	±0.05
J	37.5	±0.4	10.2	±0.4	28	+0.4/-0.7	37	+0.2/-0.7	42	+0.6/-0.7	6	+0/-2	1.2	±0.05
L	37.5	±0.4	20.3	±0.4	30	+0.4/-0.7	45	+0.2/-0.7	42	+0.6/-0.7	6	+0/-2	1.2	±0.05
М	52.5	±0.4	20.3	±0.4	30	+0.5/-0.7	45	+0.3/-0.7	57.5	+0.6/-0.7	6	+0/-2	1.2	±0.05
N	52.5	±0.4	20.3	±0.4	35	+0.5/-0.7	50	+0.3/-0.7	57.5	+0.6/-0.7	6	+0/-2	1.2	±0.05

Qualifications

Reference Standards	IEC 61071, EN61071, VDE0560				
Climatic Category	40/85/56 according to IEC 60068-1				

General Technical Data

Dielectric	Polypropylene metallized film - non inductive self-healing property
Application	DC filtering/DC-Link
Climatic Category	40/85/56 IEC 60068-1
Maximum Operating Temperature	+105°C
Endurance Test	500 hours + 500 hours at 1.3 x V _{NDC} at 85°C
Standard	IEC 61071 - EN61071 - VDE0560
Protection	Solvent resistant plastic case UL94 V-0 Thermosetting resin sealing UL94 V-0 compliant
Installation	Any position
Leads	Tinned copper wires – standard lead wire length 6 (+0/-2) mm
Packaging	Packed in cardboard trays with protection for the terminals
RoHS Compliant	'Compliant with Directive 2002/95/EC and Directive 2011/65/ EU of the European Parliament and of the Council of 8 June 2011, including Commission Delegated Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Electrical Characteristics

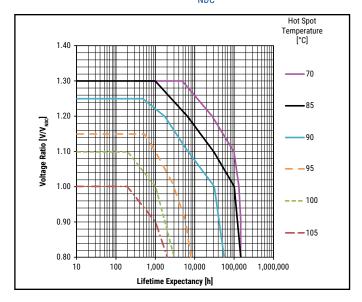
Rated Capacitance range	1 – 130 µF			
Rated Voltage (VNDC) range	450 - 1,100 VDC			
Capacitance Tolerance	$\pm 5\%$ (J) or $\pm 10\%$ (K) measured at T = ± 25 °C			
Dissipation Factor PP typical (tgδ0)	≤ 0.0002 at 10 kHz with T = 25°C (±5°C)			
Surge Voltage	$1.5 * V_{NDC}$ for maximum 10 times in life time at 25° C			
Overvaltage (IEC 61071)	$1.15 * V_{NDC}$ for maximum 30 minutes, once per day			
Overvoltage (IEC 61071)	1.3 * V _{NDC} for maximum 1 minute, once per day			
Peak Non-Repetitive Current	1.5 * I _{PKR} for maximum 1,000 times in life time			
Insulation Resistance	IR x C ≥ 30.000 seconds at 100 VDC 1 minute (+25°C)			
Capacitance deviation in operation	±1.5% maximum on capacitance value measured at T = +25°C			
Temperature Storage	-40 to +80°C			
Storage time	≤ 36 months from the date marked on the label glued to the package			
Permissible Relative Humidity - Storage	Annual average ≤ 70%; 85% on 30 days/year randomly distributed throughout the year. Dewing not admissible			

Life Expectancy

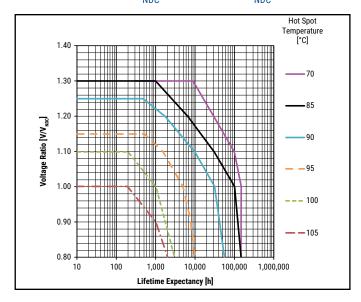
Life expectancy	100,000 hours at V_{NDC} at Hot spot temperature T_{HS} = +85°C			
Capacitance drop at end of life	-5% (typical)			
Failure rate IEC 61709	\leq 300 FIT at V _{NDC} at Hot spot temperature T _{HS} = +85°C			

Test Method

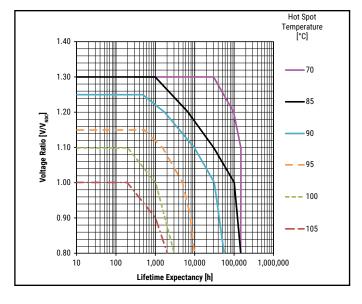
Test voltage between terminals	1.5 * V_{NDC} for 10 seconds or 1.65 * V_{NDC} for 2 seconds, at +25°C
Test voltage between terminals and case	3.2 kVac 50 Hz for 2 seconds
Damp Heat	IEC 60068-2-78
Change of temperature	IEC 60068-2-14

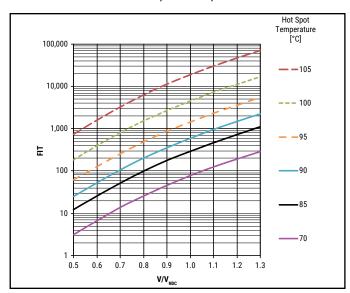

Operative Voltage Derating

		Life Expectancy (hrs)				
Operative Voltage at 70°C (T _{HS})	500	650	800	1,100	1,300	100,000
Rated Voltage at 85°C (T _{HS})	450	600	700	900	1,100	100,000
Operative Voltage at 105°C (T _{HS})	350	450	550	700	850	2,000



Lifetime Expectancy/Failure Quota Graphs


Lifetime Curve V_{NDC} = 450 V-


Lifetime Curve V_{NDC} = 600 V- and V_{NDC} = 700 V-

Lifetime Curve V_{NDC} = 900 V- and V_{NDC} = 1,100 V-

FIT at Hot Spot Temperatures

Notes:

 $T_{HS} = T_{AMB} + \Delta T$

 $\Delta T = ESR * I_{rms}^2 * Rth$

 I_{rms} should be limited to values granting $\Delta T \leq 30$ °C

Environmental Compliance

As a leading global supplier of electronic components and an environmentally conscious company, KEMET continually aspires to improve the environmental effects of our manufacturing processes and our finished electronic components.

In Europe (RoHS Directive) and in some other geographical areas such as China (China RoHS), legislation has been enacted to prevent or otherwise limit the use of certain hazardous materials, including lead (Pb), in electronic equipment. KEMET monitors legislation globally to ensure compliance and endeavors to adjust our manufacturing processes and/or electronic components as may be required by applicable law.

For military, medical, automotive, and some commercial applications, the use of lead (Pb) in the termination is necessary and/or required by design. KEMET is committed to communicating RoHS compliance to our customers. Information related to RoHS compliance will be provided in data sheets and using specific identifiers on the packaging labels.

All KEMET power film capacitors are RoHS compliant.

Materials & Environment

The selection of raw materials that KEMET uses for the production of its electronic components is the result of extensive experience. KEMET directs specific attention toward environmental protection. KEMET selects its suppliers according to ISO 9001 standards and performs statistical analyses on raw materials before acceptance for use in manufacturing our electronic components. All materials are, to the best of KEMET's knowledge, non-toxic and free from cadmium; mercury; chrome and compounds; polychlorine triphenyl (PCB); bromide and chlorinedioxins bromurate clorurate; CFC and HCFC; and asbestos.

Dissipation Factor

Dissipation factor is a complex function involved with capacitor inefficiency. The tgδ may vary up and down with increased temperature. For more information, refer to Performance Characteristics.

Sealing

Hermetically Sealed Capacitors

As the temperature increases, the pressure inside the capacitor increases. If the internal pressure is high enough, it can cause a breach in the capacitor. Such a breach can result in leakage, impregnation, filling fluid, or moisture susceptibility.

Barometric Pressure

The altitude at which hermetically sealed capacitors are operated controls the capacitor's voltage rating. As the barometric pressure decreases, the susceptibility to terminal arc-over increases. Non-hermetic capacitors can be affected by internal stresses due to pressure changes. These effects can be in the form of capacitance changes, dielectric arc-over, and/or low insulation resistance. Altitude can also affect heat transfer. Heat that is generated in an operation cannot be dissipated properly, and high Rl² losses and eventual failure can result.

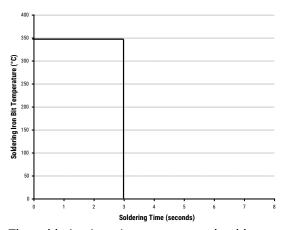
Table 1 - Ratings & Part Number Reference

Cap Value	VDC	ı	Dimensions (mm)		Dimensions (mm)			dV/dt (V/μs)	lpkr	ESL	ESR 70°C at 10 kHz	Irms* 70°C at 10 kHz	Rth (HS/Amb)	PART NUMBER
(μF)		В	Н	L	P	P1	() []	Apk	nH	mΩ	Arms	(°C/W)		
5.6	450	11	20	31.5	27.5	\	10	54	25	13.1	4.5	44	C4AEGBU4560A1WK	
10	450	13	25	31.5	27.5	١	10	96	25	8.1	6.5	36	C4AEGBU5100A1XK	
12.5	450	14	28	31.5	27.5	\	10	122	26	6.8	7.5	33	C4AEGBU5125A1YK	
15 25	450 450	19 22	29 37	31.5 31.5	27.5	\	10 10	147 245	26	6	8.5	29 23	C4AEGBU5150A11K	
40	450 450	20	40	42	27.5 37.5	10.2	7	262	28 30	4.5 3.5	11.5 13.5	20	C4AEGBU5250A12K C4AEGBW5400A3FK	
50	450	28	37	42	37.5	10.2	7	332	30	2.8	16	18	C4AEGBW5500A3JK	
55	450	24	44	42	37.5	10.2	9	481	30	2.6	17	17	C4AEGBW5550A3HK	
70	450	30	45	42	37.5	20.3	7	464	30	2.1	20.5	15	C4AEGBW5700A3LK	
100	450	30	45	57.5	52.5	20.3	4	442	35	3	19	12	C4AEGBW6100A3MK	
130	450	35	50	57.5	52.5	20.3	4	581	35	2.4	23	10	C4AEGBW6130A3NK	
3.3 5.6	600 600	11 13	20 25	31.5 31.5	27.5 27.5	\	13 13	41 71	25 25	17 10.7	4 6	44 36	C4AEHBU4330A1WJ C4AEHBU4560A1XJ	
7	600	14	28	31.5	27.5	\ \	13	88	26	9	7	33	C4AEHBU4700A1YJ	
10	600	19	29	31.5	27.5	Ì	13	127	26	6.8	8.5	29	C4AEHBU5100A11J	
15	600	22	37	31.5	27.5	Ì	13	190	28	5.3	10.5	23	C4AEHBU5150A12J	
20	600	20	40	42	37.5	10.2	9	172	30	5.3	11	20	C4AEHBW5200A3FJ	
30	600	28	37	42	37.5	10.2	9	255	30	3.6	14	18	C4AEHBW5300A3JJ	
40	600	30	45	42	37.5	20.3	9	344	30	2.8	18	15	C4AEHBW5400A3LJ	
55 75	600	30	45 50	57.5	52.5	20.3	6	319	35	4.1	16.5	12 10	C4AEHBW5550A3MJ	
75 2.7	600 700	35 11	20	57.5 31.5	52.5 27.5	20.3	6 19	435 51	35 25	3.1 18.3	20.5 4	44	C4AEHBW5750A3NJ C4AEJBU4270A1WJ	
4	700	13	25	31.5	27.5	\ \	19	77	25	12.9	5.5	36	C4AEJBU4400A1XJ	
5	700	14	28	31.5	27.5	Ì	19	96	26	10.7	6	33	C4AEJBU4500A1YJ	
8	700	19	29	31.5	27.5	Ň	19	154	26	7.3	8	29	C4AEJBU4800A11J	
12.5	700	22	37	31.5	27.5	\	19	241	28	5.5	10	23	C4AEJBU5125A12J	
15	700	20	40	42	37.5	5.1	13	196	30	6.2	10	20	C4AEJBW5150A3FJ	
15	700	20	40	42	37.5	10.2	13	196	30	6.2	10	20	C4AEJBW5150B3FJ	
20 30	700 700	28 30	37 45	42 42	37.5 37.5	10.2 20.3	13 13	262 389	30 30	4.7 3.2	12.5 16.5	18 15	C4AEJBW5200A3JJ C4AEJBW5300A3LJ	
45	700	30	45	57.5	52.5	20.3	9	389	35	4.4	16	12	C4AEJBW5450A3MJ	
55	700	35	50	57.5	52.5	20.3	9	485	35	3.6	19	10	C4AEJBW5550A3NJ	
60	700	35	50	57.5	52.5	20.3	9	530	35	3.4	19.5	10	C4AEJBW5600A3NJ	
1.5	900	11	20	31.5	27.5	١	24	36	25	26.3	3.5	44	C4AEOBU4150A1WJ	
2.7	900	13	25	31.5	27.5	\	24	65	25	15.3	5	36	C4AEOBU4270A1XJ	
3.3	900	14	28	31.5	27.5	\	24	79	26	12.9	5.5	33	C4AEOBU4330A1YJ	
5 8	900 900	19 22	29 37	31.5 31.5	27.5 27.5	\	24 24	120 193	26 28	9.1	7 9.5	29 23	C4AE0BU4500A11J	
12	900	20	40	42	37.5	10.2	16	193	30	6.6 6.3	9.5 10	20	C4AEOBU4800A12J C4AEOBW5120A3FJ	
14	900	28	37	42	37.5	10.2	16	229	30	5.4	11.5	18	C4AEOBW5140A3JJ	
20	900	30	45	42	37.5		16	321	30	3.9	15	15	C4AEOBW5200A3LJ	
30	900	30	45	57.5	52.5	20.3	11	324	35	5.2	15	12	C4AEOBW5300A3MJ	
40	900	35	50	57.5	52.5	20.3	11	428	35	4	18	10	C4AEOBW5400A3NJ	
1	1100	11	20	31.5	27.5	\	28	28	25	33.1	3	44	C4AEQBU4100A1WJ	
1.8	1100	13	25	31.5	27.5	\	29	52	25	19.1	4.5	36	C4AEQBU4180A1XJ	
2.2 3.3	1100 1100	14 19	28 29	31.5 31.5	27.5 27.5	\	29 29	63 95	26 26	16 11.2	5 6.5	33 29	C4AEQBU4220A1YJ C4AEQBU4330A11J	
5	1100	22	37	31.5	27.5	\	29	95 145	28	8.2	8.5	29	C4AEQBU4500A12J	
8	1100	20	40	42	37.5	10.2	20	157	30	7.9	9	20	C4AEQBW4800A3FJ	
10	1100	28	37	42	37.5	10.2	20	196	30	6.3	11	18	C4AEQBW5100A3JJ	
12	1100	30	45	42	37.5	20.3	20	235	30	5.3	13	15	C4AEQBW5120A3LJ	
20	1100	30	45	57.5	52.5	20.3	13	262	35	6.5	13	12	C4AEQBW5200A3MJ	
25	1100	35	50	57.5	52.5	20.3	13	331	35	5.2	16 16 5	10	C4AEQBW5250A3NJ	
27 Cap Value	1100	35	50	57.5	52.5	20.3	dV/dt	354	35	4.9	16.5	10	C4AEQBW5270A3NJ	
(μF)	VDC	В	Н	L	Р	P1	(V/µs)	lpkr	ESL	ESR	Irms	Rth	Part Number	

^(*) Current value that leads to a ΔT of $\sim 15^{\circ}$ C in the Hot spot $\to T_{HS}$ = T_{AMB} + ΔT = 70° C + 15° C = 85° C For Packaging quantities not listed contact KEMET

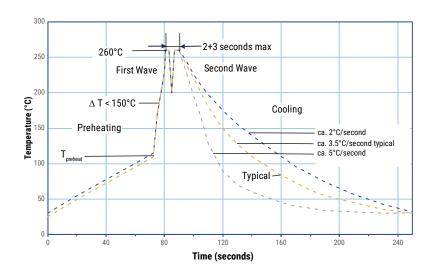
Soldering Process

The implementation of the RoHS directive has resulted in the selection of SnAuCu (SAC) alloys, or SnCu alloys, as the primary solder material. This has increased the liquidus temperature from 183° C for a SnPb eutectic alloy to $217 - 221^{\circ}$ C for new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is $160 - 170^{\circ}$ C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 - 15 mm), and great care must be taken during soldering. The recommended solder profiles from KEMET should be used. Contact KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760-1 Edition 2 serves as a solid guideline for successful soldering. See Figure 1.


Reflow soldering is not recommended for through-hole film capacitors. Exposing capacitors to a soldering profile in excess of the recommended limits may result in degradation or permanent damage to the capacitors.

Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface mount components. Insert through-hole parts after curing the surface mount parts. Contact KEMET to discuss the actual temperature profile in the oven, if through-hole components must pass through the adhesive curing process. A maximum two soldering cycles is recommended. Allow time for the capacitor surface temperature to return to normal before the second soldering cycle.

Manual Soldering Recommendations

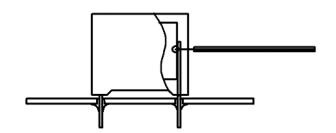

Following is the recommendation for manual soldering with a soldering iron.

Recommended Soldering Temperature

The soldering iron tip temperature should be set at 350°C (+10°C) maximum with the soldering duration not to exceed more than 3 seconds.

Wave Soldering Recommendations

Soldering Process cont.


Wave Soldering Recommendations cont.

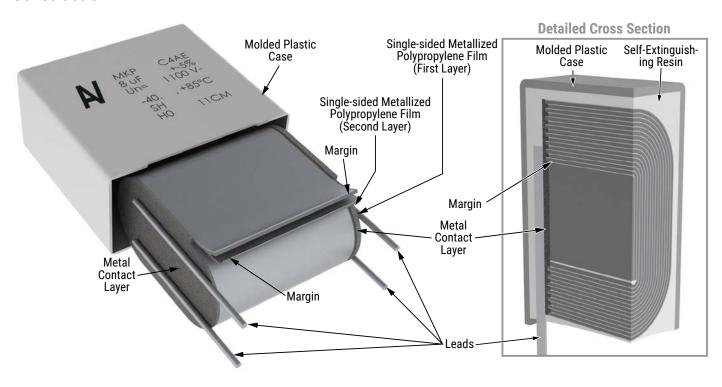
1. The tables indicates the maximum set-up temperature of the soldering process

Dielectric		mum heat erature	Maximum Peak Soldering Temperature			
Film Material	Capacitor Pitch ≤ 15 mm	Capacitor Pitch > 15 mm	Capacitor Pitch ≤ 15 mm	Capacitor Pitch > 15 mm		
Polyester	130°C	130°C	270°C	270°C		
Polypropylene	110°C	130°C	260°C	270°C		
Paper	130°C	140°C	270°C	270°C		
Polyphenylene Sulphide	150°C	160°C	270°C	270°C		

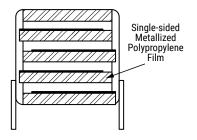
2. The maximum temperature measured inside the capacitor: set the temperature so that inside the element the maximum temperature is below the limit.

Dielectric Film Material	Maximum Temperature Measured Inside the Element			
Polyester	160°C			
Polypropylene	110°C			
Paper	160°C			
Polyphenylene Sulphide	160°C			

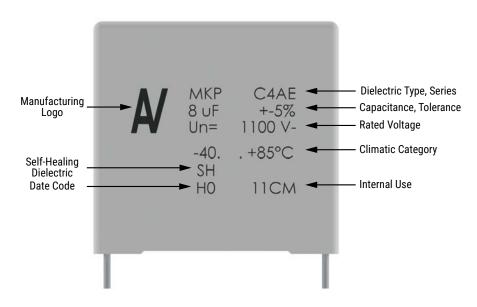
Temperature monitored inside the capacitor.


Selective Soldering Recommendations

Selective dip soldering is a variation of reflow soldering. In this method, the printed circuit board with through-hole components to be soldered is pre-heated and transported over the solder bath, as in normal flow soldering, without touching the solder. When the board is over the bath, it is stopped. Pre-designed solder pots are lifted from the bath with molten solder, only at the places of the selected components, and pressed against the lower surface of the board to solder the components.


The temperature profile for selective soldering is similar to the double wave flow soldering outlined in this document. However, instead of two baths, there is only one with a time from 3 – 10 seconds. In selective soldering, the risk of overheating is greater than in double wave flow soldering, and great care must be taken so that the parts do not overheat.

Construction



Winding Scheme

Marking

Mar	Manufacturing Date Code (IEC-60062)								
Y = Year, Z = Month									
Year	Code	Month	Code						
2010	Α	January	1						
2011	В	February	2						
2012	С	March	3						
2013	D	April	4						
2014	E	May	5						
2015	F	June	6						
2016	Н	July	7						
2017	J	August	8						
2018	K	September	9						
2019	L	October	0						
2020	М	November	N						
2021	N	December	D						
2022	Р								
2023	R								
2024	S								
2025	Т								
2026	U								
2027	V								
2028	W								
2029	Х								
2030	Α								

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.